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High order methods based on diagonal-norm summation by parts operators can be shown 
to satisfy a discrete conservation or dissipation of entropy for nonlinear systems of hyper-
bolic PDEs [1,2]. These methods can also be interpreted as nodal discontinuous Galerkin 
methods with diagonal mass matrices [3–6]. In this work, we describe how use flux differ-
encing, quadrature-based projections, and SBP-like operators to construct discretely entropy 
conservative schemes for DG methods under more arbitrary choices of volume and sur-
face quadrature rules. The resulting methods are semi-discretely entropy conservative or 
entropy stable with respect to the volume quadrature rule used. Numerical experiments 
confirm the stability and high order accuracy of the proposed methods for the compress-
ible Euler equations in one and two dimensions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulations in engineering increasingly require higher accuracy without sacrificing computational efficiency. 
Because they are more accurate than low order methods per degree of freedom for sufficiently regular solutions, high order 
methods provide one avenue towards improving fidelity in numerical simulations while maintaining reasonable computa-
tional costs. High order methods which can accommodate unstructured meshes are desirable for problems with complex 
geometries, and among such methods, high order discontinuous Galerkin (DG) methods are particularly well-suited to the 
solution of time-dependent hyperbolic problems on modern computing architectures [7,8].

The accuracy of high order methods can be attributed in part to their low numerical dissipation and dispersion com-
pared to low order schemes [9]. This accuracy has made them advantageous for the simulation of wave propagation [7,10]. 
However, while high order methods can be applied in a stable manner to linear wave propagation problems, instabilities are 
observed when applying them to nonlinear hyperbolic problems. This is contrast to low order schemes, whose high numer-
ical dissipation tends to apply a stabilizing effect [11]. As a result, most high order schemes for nonlinear conservation laws 
typically require additional stabilization procedures, including filtering [7], slope limiting [12], artificial viscosity [13], and 
polynomial de-aliasing through over-integration [14]. Moreover, stabilized numerical methods can still fail, requiring user 
intervention or heuristic modifications to achieve non-divergent solutions.

For linear wave propagation problems, semi-discretely energy stable numerical methods can be constructed, even in the 
presence of curvilinear coordinates or variable coefficients [15–18]. This semi-discrete stability implies that, under a stable 
timestep restriction (CFL condition), discrete solutions do not suffer from non-physical growth in time. However, for non-
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linear systems of conservation laws, traditional methods do not admit theoretical proofs of semi-discrete stability. This was 
addressed for low order methods with the introduction of discretely entropy conservative and entropy stable finite volume 
schemes by Tadmor [19]. These schemes rely on a specific entropy conservative flux which satisfies a condition involv-
ing the entropy variables and entropy potential, and were extended to low order finite volume methods on unstructured 
grids in [20]. High order entropy stable methods were also developed for structured grids in [21] based on an entropy 
conservative essentially non-oscillatory (ENO) reconstruction.

The extension of entropy conservative schemes to unstructured high order methods was done much more recently for 
the compressible Euler and Navier–Stokes equations in [1,2] based on a spectral collocation approach on tensor product 
elements, which can also be interpreted as a mass-lumped DG spectral element (DG-SEM) scheme. The proof of entropy 
conservation relies on the presence of a diagonal mass matrix, the summation by parts (SBP) property [22], and a con-
cept referred to as flux differencing. Similar entropy-stable schemes have been constructed for the shallow water and MHD 
equations [4,5,23]. Finally, high order entropy conservative and entropy stable schemes have been extended to unstructured 
triangular meshes in [24,6].

It is possible to construct energy preserving schemes for certain conservation laws based on split forms of conservation 
laws, which involve both conservative and non-conservative derivative terms. Split formulations have been shown to re-
cover kinetic energy preserving schemes for the compressible Euler and Navier–Stokes equations under diagonal norm SBP 
operators [25–27]. Additionally, for dense norm and generalized SBP operators, stable schemes for Burgers’ equation can 
be constructed based on the split form of the underlying equations [22,28,29]. However, entropy conservative and entropy 
stable schemes for the compressible Euler or Navier–Stokes equations do not correspond to split formulations [6], and (to 
the authors knowledge) the construction of unstructured high order entropy conservative and entropy stable schemes for 
these equations has required diagonal norm SBP operators.1 We refer to DG methods with these properties as diagonal 
norm SBP-DG methods.

Appropriate diagonal norm SBP operators are straightforward to construct on tensor product elements based on a DG-
SEM discretization. Diagonal-norm SBP operators can also be constructed for triangles and tetrahedra [31,32,6]; however, the 
number of nodal points for such operators is typically greater than the dimension of the natural polynomial approximation 
space, and the resulting diagonal norm SBP-DG operators do not correspond to any basis [32]. Furthermore, to the author’s 
knowledge, appropriate point sets have only been constructed for N ≤ 4 in three dimensions [33], and the construction of 
high order diagonal norm SBP-DG methods has not yet been performed for uncommon elements such as pyramids [34].

This work focuses on the construction of entropy conservative high order DG schemes for systems of conservation laws. 
In order to generalize beyond diagonal norm SBP-DG methods, we will consider DG discretizations using over-integrated 
quadrature rules with more points than the dimension of the approximation space, which are commonly used for non-tensor 
product elements in two and three dimensions [35]. These quadrature rules induce DG schemes which are related to dense 
norm and generalized SBP operators [36,28,37], for which discretely entropy stable schemes for the compressible Euler 
equations have not yet been constructed. We present proofs of discrete entropy stability using both a matrix formulation 
involving a “decoupled” SBP-like operator and continuous formulations involving projection and lifting operators. In both 
cases, the proofs rely only on properties which hold under quadrature-based integration. We also focus on ensuring discrete 
entropy stability for conservation laws which do not admit a nonlinearly stable split formulation.

The outline of the paper is as follows: Section 2 will briefly review the construction of entropy conservative diago-
nal norm SBP-DG methods on a single element. Section 4 will describe how to construct analogous entropy conservative 
methods on single element in a continuous setting. Section 5 will discuss extensions to multiple elements, including com-
parisons of different coupling terms and entropy stable fluxes. Finally, Section 6 presents numerical results which verify the 
high order accuracy and discrete entropy conservation of the proposed methods in one and two spatial dimensions.

2. Entropy stability for systems of hyperbolic PDEs

We will begin by reviewing continuous entropy theory. We consider systems of nonlinear conservation laws in one 
dimension with n variables

∂u

∂t
+ ∂ f (u)

∂x
= 0, u(x, t) = (u1(x, t), . . . , un(x, t)), (1)

where the fluxes f (u) are smooth functions of the vector of conservative variables u(x, t). We are interested in systems for 
which there exists a convex entropy function U (u) such that

U ′′(u)A(u) = (
U ′′(u)A(u)

)T
, (A(u))i j =

(
∂ f (u)

∂u j

)
i

, (2)

where A(u) is the Jacobian matrix. For systems with convex entropy functions, one can define entropy variables v = U ′(u). 
The convexity of the U (u) guarantees that the mapping between conservative and entropy variables is invertible.

1 Entropy stable high order finite element and DG methods which do not fall under the diagonal norm SBP-DG category have been proposed [30], but 
the proofs are often given at the continuous level, relying on exact integration or the chain rule, which do hold at the discrete level.
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