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We present a novel high-order discontinuous Galerkin discretization for the spherical 
shallow water equations, able to handle wetting/drying and non-conforming, curved 
meshes in a well-balanced manner. This requires a well-balanced discretization, that 
cannot rely on exact quadrature, due to the curved mesh. Using the strong form of the 
discontinuous Galerkin discretization, we achieve a splitting of the well-balanced condition 
into individual problems for the flux and volume terms, which has significant advantages: 
It allows for the construction of non-conforming, well-balanced flux discretizations, i.e. we 
can perform non-conforming mesh refinement while preserving the well-balanced property 
of the scheme. More importantly, this approach enables the development of a new method 
for handling wet/dry transitions. In contrast to other wetting/drying methods, it is well-
balanced and able to handle wetting/drying robustly at any polynomial order, without 
the introduction of physical model assumptions such as viscosity, artificial porosity or 
cancellation of gravity.
We perform a series of one-dimensional tests and analyze the properties of our scheme. 
In order to validate our method for the simulation of large-scale tsunami events on 
the rotating sphere, we perform numerical simulations of the 2011 Tohoku tsunami and 
compare our results to real-world buoy data. The method is able to predict arrival times 
and wave amplitudes accurately even over long distances. This indicates that our method 
accurately captures all physical phenomena relevant to the long-term evolution of tsunami 
waves.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Numerical methods for the simulation of the shallow water equations have seen a considerable amount of research 
interest during the last decades, as they can be used to model a wide variety of physical phenomena from storm surges 
to tsunami propagation. One of the long-standing goals is the development of a tsunami early warning system for hazard 
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forecast and risk assessment. This requires a physically accurate model and a robust and efficient numerical method for the 
simulation of the tsunami propagation.

The simulation of large-scale tsunami events pose some challenges for the physical model and the numerical method. 
On the model side, it is crucial to take interaction with land masses and effects of Earth’s curvature into account. Tsunami 
events affect oceans globally, thus for realistic simulations at large scales, we have to incorporate curvature of the sphere, 
wetting/drying and the Coriolis force into the model.

The numerical method on the other hand has to be adaptive, robust and highly efficient. A particularly promising nu-
merical method is the discontinuous Galerkin (dG) method, as it offers numerous advantages over competing methods for 
the simulation of wave propagation problems. Among them are high-order accuracy, innate parallelism and the flexibility 
of hp-adaptivity [1]. Additionally, for the simulation of tsunamis we require the well-balanced property and the ability to 
handle wetting and drying accurately. Since tsunamis can be regarded as perturbations of the water at rest steady state, it 
is important to use well-balanced schemes, which can conserve the steady state numerically [2–4]. Flooding and drying is 
important as tsunami waves interact with land masses and capturing the correct, physical behavior at the wet/dry transition 
is crucial for the accurate simulation of tsunamis.

In this work, we present a novel method for the simulation of the shallow water equations on the surface of a rotating 
sphere using the discontinuous Galerkin method. This requires the development of a high-order dG method, which can 
handle curved, non-conforming meshes with discontinuous bottom topography and wet/dry transitions in a well-balanced 
manner.

Although well-balanced schemes have received considerable attention, there appears to be only limited past work con-
sidering well-balanced discontinuous Galerkin schemes on curved meshes. The key difficulty is the lack of exact numerical 
integration on which many of the well-balanced methods rely on [5–8]. Notable exceptions are presented by Chandrashekar 
and Zenk [9] and Wintermeyer et al. [10]. In both papers, the authors exploit the strong form of the discontinuous Galerkin 
formulation to match the discretizations of flux and source terms and construct a well-balanced scheme in this way. In the 
latter, a well-balanced and entropy-stable dG scheme is presented for the shallow water equations on curvilinear elements. 
However, no discussion of non-conforming meshes or wetting/drying is included.

The inclusion of land masses poses the question of how to treat the shoreline in the discontinuous Galerkin context. One 
approach is to handle shorelines as free boundaries [11], which is in line with the physical model as it loses its validity in 
dry areas. This has the advantage that numerical problems, associated with dry areas in the solution, are avoided. On the 
other hand, an accurate model for the dynamics of the shoreline is required in order to calculate the position of the moving 
boundary. Often, constant remeshing is required and topological changes need to be taken care of, amounting to prohibitive 
computational costs. An alternative adopted in numerous works is to handle wetting and drying within the computational 
domain. These approaches can be seen as a special type of immersed boundary method. Wet/dry transitions introduce three 
distinct numerical difficulties: maintaining positivity of the water height, introduction of unphysical pressure gradients, and 
numerical instabilities due to the discontinuities associated with the transition. Various methods exist to ensure positivity 
of the approximate solution [7,12,13]. A popular method introduced by Xing et al. [12] is to maintain the positivity of 
cell-averages using a timestep restriction. Positivity on the nodes is then ensured by using a positivity-preserving limiter, 
which rescales the polynomial around the positive average. While it is claimed that this method is well-balanced [12,14], 
it is not unconditionally well-balanced as partly dry cells are neglected. Semi-dry cells introduce artificial gradients and 
generate unphysical waves at the shores. This effect, also called “numerical storms” sometimes [10], has been observed by 
other authors, but there exists no satisfactory solution to this problem. Kesserwani and Liang [8] propose a reconstruction 
of nodal values such that the pressure gradients vanish for the “lake at rest” solution. The authors present this method 
for a piecewise linear method in one dimension and it is unclear how this approach performs for higher-order methods. 
Bunya et al. [15] as well as [6] propose to cancel gravity in these cells to eliminate the problem of artificial pressure 
gradients. This requires the introduction of dual-valued fluxes in order to make the scheme well-balanced for the case of 
the “lake at rest” solution. While both wet/dry treatments make the scheme well-balanced, they are not consistent with the 
physical model at the shores and appear to be restricted to piecewise linear polynomials. Other approaches use “artificial 
porosity” and introduce a fraction indicator to represent how much of the cell is wet and how much is dry [16,17]. This 
allows for implicit time integration with large steps but introduces other problems such as higher wave speeds in the 
wet/dry region and an altered shallow water model. Finally there is the issue of stability at the wet/dry interface. Most 
previously mentioned wetting/drying algorithms reduce the order of the solution to linear polynomials and apply a slope 
limiter to prevent unphysical discharges [12,15]. Meister and Ortleb [7] use an implicit scheme with a modal filter and a 
shock indicator to stabilize the scheme in the nearly dry regions.

The numerical solution of the shallow water equations on the sphere using the discontinuous Galerkin method has 
been investigated by various authors, although typically neglecting the influence of bottom topography [18,19]. Blaise and 
St-Cyr [20] construct a discontinuous Galerkin method on the sphere for tsunami simulations and use an adjoint method in 
order to optimize initial conditions based on buoy data comparison [21]. This method is promising as it demonstrates the 
feasibility of using discontinuous Galerkin simulations on the sphere in combination with an adjoint method to reconstruct 
initial conditions from buoy data to obtain accurate early warnings. Their method lacks wetting/drying however, and shores 
are treated as reflecting boundaries, which result in unphysical reflections at the shorelines.

In this paper, we propose a general method for the construction of well-balanced dG discretizations on curved, non-
conforming meshes with wet/dry transitions. Our method is based on the observation that the condition for a well-balanced 
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