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We introduce an efficient non-intrusive surrogate-based methodology for global sensitiv-
ity analysis and uncertainty quantification. Modified covariance-based sensitivity indices 
(mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is 
applied to simulations of a complex plasma-coupled combustion system with disparate un-
certain parameters in sub-models for chemical kinetics and a laser-induced breakdown ig-
nition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as 
widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces 
and a polynomial dimensional decomposition (PDD) representing its multi-dimensional 
components. The coefficients of the PDD expansion are obtained using a least-squares 
regression, which both avoids the direct computation of high-dimensional integrals and 
affords an attractive flexibility in choosing sampling points. This facilitates importance sam-
pling using a Bayesian calibrated posterior distribution, which is fast and thus particularly 
advantageous in common practical cases, such as our large-scale demonstration, for which 
the asymptotic convergence properties of polynomial expansions cannot be realized due 
to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. 
Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correla-
tion of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which 
can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then 
proposed in order to bound this magnitude ∈ [0, 1]. The polynomial expansion is coupled 
with an adaptive ANOVA strategy to provide an accurate surrogate as the union of sev-
eral low-dimensional spaces, avoiding the typical computational cost of a high-dimensional 
expansion. It is also adaptively simplified according to the relative contribution of the dif-
ferent polynomials to the total variance. The approach is demonstrated for a laser-induced 
turbulent combustion simulation model, which includes parameters with correlated effects.
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1. Introduction

This paper presents an uncertainty quantification (UQ) and global sensitivity analysis (GSA) method designed for rela-
tively high-dimensional problems. It is based on variance-based GSA with the global sensitivity indices (SI) introduced by 
Sobol’ [1] using the Analysis of Variance (ANOVA) expansion for independent inputs. The use of Sobol’ indices is now one of 
the most common GSA techniques. It uses a functional decomposition to incorporate component functions involving single 
or groups of uncertain parameters, and the computation of the sensitivity measures of each component function is usually 
done by Monte Carlo (MC) or quasi Monte Carlo (quasi-MC) methods. Theoretical properties of the global SI are established 
[2–6], and it has proven useful in applications [7]. Similar sensitivity measures were developed independently by Wag-
ner [8] in operations research. However, here at the outset, we should recognize that sensitivity analysis is limited to global 
methods and to variance-based definitions. Borgonovo and Plischke [9] and Ghanem et al. [10] review local sensitivity mea-
sures, derivative-based global measures, moment-independent (density-based) measures, and value-of-information-based 
measures. Several global measures (including variance-, density-, and value-of-information-based sensitivities) satisfy a com-
mon rationale [11], and quantify the discrepancy between unconditional and conditional probability. Borgonovo et al. [11]
address the estimation methods for this class of global measures.

It is well-understood that GSA seeks to quantify the overall influence of input parameters on output quantities of interest 
(see for example Borgonovo et al. [12]). However, a broad evaluation of the parameter space can lead to high cost in, for ex-
ample, MC or quasi-MC methods. Sudret [13] used generalized Polynomial Chaos expansions (gPC) to build surrogate models 
for computing Sobol’ sensitivity indices based on the surrogate form. Blatman and Sudret [14] further introduced the sparse 
gPC expansions in order to efficiently estimate the global SI. To avoid the cost of brute-force evaluation in high dimensions, 
they employ a stepwise approach to select only most significant polynomials by recursively resolving a least-squares regres-
sion (LSR) system. The LSR approach is an efficient tool to compute polynomial expansion coefficients, by minimizing the 
error of the surrogate model representation in the mean-square sense [13–15]. Compared to a projection approach [16–18], 
where each polynomial coefficient is obtained by computing a multi-dimensional integral, the LSR approach is more flexible 
(in choosing sampling points), which seems to be generally advantageous for problems involving a potentially large number 
of uncertain parameters.

In contrast to the Blatman and Sudret [14] approach, Tang et al. [19] used ANOVA expansion and Polynomial Dimen-
sional Decomposition (PDD) [20–24] to represent the expansion’s component subspace functions. The main challenge, and 
motivation for improving PDD methods, is reducing the required number of samples, which corresponds to the cost of 
the method. Standard ANOVA components increase exponentially with the number of uncertain parameters, with a corre-
sponding polynomial increase of the number of PDD terms for each component function. This limits the LSR approach even 
for a truncated low-order ANOVA expansion; indeed, for the LSR problem to be well-posed, the number of deterministic 
model evaluations is necessarily larger than the total polynomial expansion size [14]. Thus, Tang et al. [19] introduced an 
advantageous combination of the adaptive ANOVA method [25,26] and the stepwise regression technique [14], with which 
a sparse surrogate model representation can be efficiently constructed. A key to doing this is the use of variance contri-
bution to select the most important polynomials. Tang et al. [19] demonstrated that this can be more efficient. Thus, the 
present work is based on the use of this approach to take advantage of its efficiency for building sparse surrogates when 
the superconvergence of PDD/gPC expansions cannot be achieved, as is often the case in practice.

Correlative effects are particularly important in the current combustion application introduced in Sections 9 and 10. Defi-
nitions and numerical techniques can be developed for global sensitivity analysis with correlated inputs [27–29]. Kucherenko 
et al. [29] employed the same definition as Sobol’ SI [1] for cases with correlative inputs, by using the conditional expec-
tation for first-order SI, and the conditional variance for total sensitivity indices (TSI). These variance-based SI (Var-SI) [29]
are consistent with Sobol’ SI in case of independency, and in case of correlation their first-order SI are still strictly positive 
and bounded by [0, 1]. The computation relies on the use of MC methods with the knowledge of conditional probability 
density function (pdf). Alternatively, Li et al. [27] originally introduced the covariance-based sensitivity indices (Cov-SI) to 
account for correlative effects among ANOVA component functions due to input correlation. They introduced three Cov-SI 
(structural, correlative, and total contribution) for each component function, which reduce to a single index for independent 
inputs. Rahman [30] later defined the same sensitivity indices [31]. Under a boundedness type assumption on the joint pdf 
of inputs, Chastaing et al. [28] showed the availability of a generalized ANOVA decomposition, based on which they defined 
generalized sensitivity indices that are very similar to Cov-SI [27]. Li and Rabitz [31] recently established for correlated 
inputs a relationship between Var-SI and Cov-SI, and showed that Var-SI can be estimated from Cov-SI by using a modest 
number of model evaluations. An advantage of the Cov-SI [27] compared to Var-SI [29] is that a conditional pdf is not re-
quired when computing component functions, which is an attractive property since conditional distribution is rarely known 
completely, such as in our combustion application. Thus, we use the approach of Li et al. [27]. However, a disadvantage 
of this approach is that neither the Cov-SI are strictly non-negative nor their magnitude bounded. Consequently, one can 
obtain extremely large Cov-SI in presence of strong negative correlation between ANOVA components. We thus introduce 
generalized covariance-based sensitivity indices (mCov-SI), with magnitude ∈ [0, 1].

The specific formulation we use is developed in Section 2, with emphasis on the new contributions. Overall it includes 
the ANOVA decomposition, polynomial representation of ANOVA components, and LSR approach for computation of coef-
ficients. The adaptive sparse meta-modeling approach with stepwise LSR is summarized in Section 3. The variance-based 
SI (Var-SI) are presented in Section 4 and the original Cov-SI for correlated inputs in Section 5 as a foundation. Only key 
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