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This article deals with an efficient strategy for numerically simulating radiative transfer 
phenomena using distributed computing. The finite element method alongside the discrete 
ordinate method is used for spatio-angular discretization of the monochromatic steady-
state radiative transfer equation in an anisotropically scattering media. Two very different 
methods of parallelization, angular and spatial decomposition methods, are presented. To 
do so, the finite element method is used in a vectorial way. A detailed comparison of 
scalability, performance, and efficiency on thousands of processors is established for two-
and three-dimensional heterogeneous test cases. Timings show that both algorithms scale 
well when using proper preconditioners. It is also observed that our angular decomposition 
scheme outperforms our domain decomposition method. Overall, we perform numerical 
simulations at scales that were previously unattainable by standard radiative transfer 
equation solvers.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Energy transport via radiative transfer is significant for many fields of science and technology, especially when high 
temperatures are considered. The modeling of such radiative transfer phenomena has been gaining attention these last 
decades within diverse scientific fields, such as heat transfer [1,2], neutron transport [3,4], optical imaging [5,6], biomedical 
optics [7,8], astrophysics [9,10], radiative transport [11–13], etc.

Commonly, radiative transfer equation (RTE) is used to mathematically formulate the process of radiative transfer at 
mesoscopic/macroscopic scales [14]. For many modern applications, e.g., combustion in furnaces, solid rocket propulsion, 
gas turbine engine, heat exchange in concentrated solar power technologies, particle transport in nuclear reactors, and 
laser heating of materials to cite but a few, solving the three-dimensional RTE forms an essential requisite. Apart from 
considering the three spatial dimensions (x, y, z), one also needs to incorporate two angular dimensions (θ, φ), time (t), 
and frequency (ν) dependencies for solving the full three-dimensional RTE, henceforth transforming it to a 7D problem. 
However, the physics considered in this article being restricted to monochromatic and steady-state, the 3D radiative transfer 
equation in participating media thus becomes a 5D problem. The main goal of this article is to design efficient numerical 
solvers for such problems.
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Nomenclature

t time
I radiative intensity
I vectorial radiative intensity
Im discrete vectorial radiative intensity
Î manufactured radiative intensity
Ib blackbody emission
Im discrete radiative intensity
x Cartesian space coordinates
s direction vector
sm discrete direction vector
sin input direction vector
S vectorial direction vector
c speed of light
� scattering phase function
κ absorption coefficient
σs scattering coefficient
β extinction coefficient
T temperature
Sn−1 angular domain
D spatial domain
∂D spatial domain boundary
Nv number of mesh nodes
n outward unit normal vector
ν frequency
θ zenith angle
φ azimuthal angle

 phase–weight scattering matrix
ω albedo

ωm discrete solid angle/weight
x x-coordinate
y y-coordinate
z z-coordinate
g anisotropic coefficient
Na number of angles
v FE test function
V vectorial FE test function
γ SUPG stabilizing coefficient
V FE functional space
WNa vectorial FE functional space
ϕi FE basis function
Mx spatial mesh
Ms angular mesh
np number of processes
A global stiffness matrix
Ai,i diagonal submatrix
Ai,j off-diagonal submatrix
D radiative density
D̂ exact radiative density
c1 algorithmic constant
hx spatial mesh length
hs angular mesh length
Ne number of mesh elements
I in input radiative intensity
d.o.f. degree of freedom
nnz number of nonzeros

In the past, a vast range of numerical methods have been applied for the solution of the RTE. Each of these meth-
ods claims to have one or the other advantage over the others. These methods are divided into two main groups: 
physics-based (stochastic) approaches, and mathematics-based (deterministic) discretization approaches. Among stochas-
tic approaches, the Monte Carlo method is frequently used for solving radiative transfer. This choice is supported by diverse 
and huge amount of research [15–20]. In principle, such a method could be applicable to any problem, since it only involves 
following all the scattering and absorption events of photon packets inside the computational domain. Naturally, due to its 
iterative nature, such a process may become very time consuming when considering a three dimensional and/or an optically 
thick medium. This comes from the fact that photon packets need to be scattered several thousand times in such domains. 
However, the main advantage of this method is that it is very versatile and simple to set up, at least for simple geometries.

Alternatively, deterministic approaches consist in approximating the radiative transfer equation by mathematical means. 
Since this equation is expressed both in space (x, y, z) and angles (θ, φ), the discretization needs to be applied to all coordi-
nates. Firstly, concerning the angular discretization, the PN method, also known as the spherical harmonics method, is one 
of the most commonly used methods, probably due to its easy implementation. This method, which was first introduced 
in [21], uses an orthogonal basis to express the harmonics on the unit sphere. Although this method has been applied ex-
tensively in radiative transfer [22–24], it lacks accuracy for consistent solutions in optically thin or semi-transparent media. 
Another approach consists in discretizing the angular space based on a quadrature rule. Introduced by Chandrasekhar [25], 
this so-called discrete ordinate method (DOM) consists in solving a set of semi-discretized RTEs, the weights associated to 
the discrete ordinates (angular discretizations) are given by a quadrature rule [26,27]. As suggested in [28], in this paper a 
unit sphere is partitioned and the weights associated to the angular discretizations are given by the measure of the related 
solid angles. One of the reasons for choosing this kind of discretization for the DOM being that it is consistent with the 
specular reflection treatment previously developed by the authors [29]. In certain situations, the DOM may be prone to ray 
effects and false scattering, cf. [30,31], leading to inaccurate solutions. Apart from these specific cases, the DOM remains the 
reference method when associated to an efficient numerical scheme.

Secondly, concerning the spatial coordinates, RTE can be discretized using the finite difference method, the method of 
short characteristics, the finite volume method, and the finite element method. Simplest among these are the finite differ-
ence method [32] and the method of short characteristic [33]. These are typically used for regular structured meshes and 
simple geometries. Among all, the finite volume method (FVM) is the most commonly used method. Recently, the review 
paper [34] listed the advances of the FVM for solving radiative transfer problems. The finite element method (FEM) for spa-
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