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Through parallelization, field programmable gate array (FPGA) can achieve unprecedented 
speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new 
constraints and new opportunities for the implementations of random number generators 
(RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using 
empirical and application based tests, this study evaluates all of the four RNGs used in 
previous FPGA based MC studies and newly proposed FPGA implementations for two well-
known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly 
proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator 
(Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of 
LPMC simulations on FPGA.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo (MC) simulations have been widely used in many areas of computational physics. Large-scale MC simula-
tions require a high level of parallelization to make the simulation time manageable. MC simulations are communication 
intensive tasks, which are difficult to parallelize on central processing unit (CPU) based computing platforms due to the “Von 
Neumann bottleneck” [1]. Special computing platforms based on graphical processing unit (GPU) and field programmable 
gate array (FPGA) have been utilized for such simulations [2–5]. A high-end FPGA chip has millions of logical elements (LEs) 
and compatible amount of reconfigurable interconnecting resources that can be programmed to perform large-scale parallel 
Monte Carlo (LPMC) simulations efficiently [2,3,6–8]. The highest MC Ising spin update speed (1.6 ps per spin) is achieved 
on a FPGA system recently [8]. FPGA has also been applied in wide-ranging computational fields such as spin glass [7,9,10], 
computational chemistry [11], neural networks [12], artificial intelligence [13], nuclear medicine [14], and finance [15].

Random number generator (RNG) is an essential element of any MC simulation; the quality of the used RNG can in-
fluence the quality or even the validity of the simulation results [3,16,17]. A LPMC simulation system requires a large 
number of parallel and independent random number sequences, therefore requires RNGs with small memory and logical 
resource footprint; such requirements place stringent conditions on suitable RNGs. Many RNGs that are popular on CPU 
based platforms turn out not suitable for FPGA based systems. For example, Mersenne Twister [18] has a large number of 
state variables and hence use a large amount of logical resource. Another unsuitable popular RNG is KISS [19], which relies 
on addition and multiplication operations in serial steps thus requires a very large amount of logical circuitry to parallelize. 
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As a result, FPGA based LPMC studies usually have to use less-popular or roll-your-own RNGs which generally have a small 
number of state variables and rely on operations that are easily implementable and parallelizable.

Janus, a FPGA based LPMC system, uses a modified version of additive lagged Fibonacci generator (ALFG) proposed by 
Parisi and Rapuano [17] to simulate a variety of Ising and spin glass systems [7,9,10]; Gilman et al. use 24 copies of 
linear-feedback shift register (LFSR), which produce a 24-bit random number at each system clock, to simulate 3D Ising 
lattices [20,21]; Lin et al. used combined 43-bit LFSR and 37-bit cellular automata shift register (CASR) to simulate 2D Ising 
lattices up to 1024 × 1024 [2]; they also used combined 52-bit Leap LFSR and 37-bit CASR to simulate 2D Ising lattices 
up to 2048 × 2048 [3], where Leap LFSR is a hardware accelerated multi-iteration version of LFSR [22], equivalent to the 
multi-copy LFSR used by Gilman et al.; Francisco et al. use combined local 12-bit LFSR and global 32-bit LFSR to simulate 
2D Ising lattices [8].

These less-popular or roll-your-own RNGs used in previous FPGA based studies need more careful tests to ensure their 
quality. Furthermore, LPMC studies tend to have a large number of independent RNGs and extremely long simulations, in-
creasing the possibility of correlations not only within a bit stream from a single RNG instance but also among bit streams 
from multiple RNG instances. Previous studies have shown that problematic correlation effects can manifest themselves 
in LPMC studies [3]. It is therefore necessary to carry out more tests on these RNGs, especially application tests on large 
systems and for long periods of simulation times. In addition, it is desirable to tryout new RNGs on FPGA, especially well-
known high-quality ones on CPU based systems. In this study, we run empirical and application tests on RNGS from previous 
FPGA based LPMC studies, including the Parisi–Rapuano RNG which is a modified version of ALFG [17], Leap LFSR which 
is similar to multi-copy LFSR used in [22], combined 52-bit Leap LFSR and 37-bit CASR [3], and combined 43-bit LFSR and 
37-bit CASR [2]. For sake of comparison, linear congruential generator (LCG) [23], a known low-quality RNG, is also included 
in this study.

In addition, we implement and test two well-known high-quality RNGs on FPGA: xorshift128 and ALFG with extremely 
long lags for possible usage in FPGA based LPMC systems. Xorshift128 has been tested in many CPU based studies [24–26]; 
it has a small memory footprint of only 128 bits and therefore is well-suited for combinatory circuitry implementation 
on FPGA. ALFG has a relatively large memory footprint, and ALFG with short lags is known to fail certain empirical tests 
[17,27], however, ALFG with very long lags has a very good quality [27,28]. FPGA gives us capabilities to deal with both of 
these two issues simultaneously; instead of using multiple instances of ALFG with a short lag, we propose to implement a 
single instance of ALFG with an extremely long lag (4423) in combinatory circuits that can execute multiple iterations and 
hence provide multiple random numbers within a single system clock. As a result, the quality of the RNG is very high and 
the effective logical resource per random number is very small. We shall call this implementation scheme Parallel ALFG. For 
the sake of references, we refer to the above mentioned RNGs as RNG No. 1 to No. 7, respectively.

Testing suites DIEHARD and NIST are used for empirical tests while simulations of small and large-scale 2D Ising lattices 
at the critical temperature are used for application based ones. For application tests, the internal energies of 16 × 16 Ising 
lattices are simulated and compared with the theoretical value, and scaling properties of isothermal susceptibility of Ising 
lattices up to 2048 × 2048 are compared against finite size scaling (FSS) theory [3]. The FPGA system used in this study 
is an off-shelf FPGA development board DE4 from Terasic®. The FPGA chip on this board is an Altera Stratix IV GX FPGA 
(EP4SGX530C2), which has 531,200 LEs and 27,376 Kb memory. The FPGA based Ising lattice simulation system is developed 
using Verilog hardware description language [29] and runs with a system clock of 100 MHz. Details of the designs are 
reported elsewhere [2].

The paper is constructed as the following. In Section 2, we give detailed description of our FPGA implementation of 
the tested RNGs with focus on No. 2 (Leap LFSR), No. 6 (xorshift128) and No. 7 (Parallel ALFG), which all need specially 
designed combinatory circuitries to accelerate their iteration process. In Section 3, we present implementation details and 
testing results of NIST and DIEHARD empirical tests and that of the two types of 2D critical Ising lattice application tests. In 
Section 4 and Section 5, we give discussions and conclusions of this study.

2. Parallel random number generators on FPGA

LPMC studies require a large number of independent and extremely long random number sequences which can only 
be obtained by carefully designed parallel versions of RNGs. There are commonly two methods of constructing a parallel 
RNG from a serial RNG: the leap-frog method and the independent-sequence method [23]. The leap-frog method divides a 
single sequence from a serial RNG in a round-robin way among all the parallel processing units. One way of implementing 
a leap-frog parallel RNG for a system with N parallel processing units is to create a serial RNG instance for each of the 
parallel processing units, and to iterate each RNG instance N times instead of the usual one time before delivering a 
random number. With an identical seed and suitable initial iteration status, the parallel RNG instances would have divided 
the random sequence among themselves, with the ith processing unit generating random numbers xi , xi+N , xi+2N , · · · from 
the whole sequence. It is possible for only a few serial RNGs, such as LCG and LFSR, to realize such leap forward in a single 
step instead of actually iterating N times on a CPU based system [30]. On the other hand, a large class of serial RNGs 
can be hardware accelerated on FPGA to achieve this leap forward effect [17,22], and thus provide more opportunities of 
parallelizing RNGs with the leap-frog method. Furthermore, an RNG instance on FPGA can execute multiple leap forward 
actions simultaneously, acting like multiple RNG instances that can provide multiple random numbers simultaneously. RNG 
No. 7 and, to a lesser extent, RNG No. 1 are such examples and their implementations will be discussed in Section 2.7.
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