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A discrete De Rham complex enables compatible, structure-preserving discretizations 
for a broad range of partial differential equations problems. Such discretizations can 
correctly reproduce the physics of interface problems, provided the grid conforms to the 
interface. However, large deformations, complex geometries, and evolving interfaces makes 
generation of such grids difficult. We develop and demonstrate two formally equivalent 
approaches that, for a given background mesh, dynamically construct an interface-
conforming discrete De Rham complex. Both approaches start by dividing cut elements 
into interface-conforming subelements but differ in how they build the finite element 
basis on these subelements. The first approach discards the existing non-conforming basis 
of the parent element and replaces it by a dynamic set of degrees of freedom of the 
same kind. The second approach defines the interface-conforming degrees of freedom on 
the subelements as superpositions of the basis functions of the parent element. These 
approaches generalize the Conformal Decomposition Finite Element Method (CDFEM) and 
the extended finite element method with algebraic constraints (XFEM-AC), respectively, 
across the De Rham complex.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The De Rham differential complex encodes the mathematical structure of a large class of partial differential equations 
(PDEs). It is now well understood that compatible discretizations for such PDEs require approximation of the De Rham com-
plex by a collection of interconnected discrete spaces that form its discrete analog [1,2]. This implies defining discrete spaces 
and operators that provide a discrete vector-calculus structure supporting discrete versions of fundamental vector calculus 
results such as the Hodge decomposition, the Stokes’ theorem and the Divergence theorem; see, e.g., [3]. The resulting com-
patible spatial discretization then preserves key aspects of the mathematical structures that govern the well-posedness of 
the PDE [4–6]. Such discretizations not only give rise to stable and accurate numerical methods, but also tend to produce 
physically meaningful approximate solutions free of spurious modes.

The Whitney complex [7], which is defined on simplicial mesh partitions, is perhaps the earliest example of a discrete 
De Rham complex. Its role for the stable and accurate discretization of the Maxwell’s equations was first elucidated by 
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Bossavit [8]. Subsequently, these ideas have been applied to develop an extensive collection of discrete vector calculus 
structures in multiple discretization contexts, including finite differences [2,9], finite volumes [10–13], hp finite elements 
[14], and spectral elements [15,16].

Many important physical problems, such as two-phase flows, thermal conduction or electromagnetic diffusion across two 
different materials, and linear elasticity with discontinuous Poisson ratios, involve material discontinuities across interfaces 
embedded in the model domain. One important aspect of compatible discretization methods for such problems is their 
ability to capture the correct physical behavior of the exact solutions across the material interfaces, provided the mesh is body 
fitted, i.e., aligned with the interface. Then, compatible discretizations preserve properties such as continuity of tangential 
components of electric fields between two different conductors and continuity of normal heat fluxes on the interface be-
tween two different heat conducting materials. These properties are critical in simulation of electromagnetic phenomena, for 
example, which requires the accurate resolution of surface effects, as current tends to concentrate near material interfaces.

However, generation of body-fitted grids can be difficult or and/or prohibitively expensive if the interface has complex 
geometry, is evolving in time, or the material domain undergoes large deformations. This presents a significant challenge 
for the implementation and use of compatible discretization methods in many practically important simulation scenarios. 
Yet, simply ignoring the lack of mesh conformity to the interface is not an option. Besides the incorrect physical behavior 
of the numerical solutions, methods that proceed along this path also tend to lose accuracy; see e.g., [17], thereby reducing 
both the physical fidelity and the computational efficiency of the simulations.

The field of interface-capturing finite element methods has primarily dealt with standard nodal C0 finite element spaces. 
These methods include the eXtended Finite Element Method (XFEM), e.g., [18–22], the Conformal Decomposition Finite 
Element Method (CDFEM), e.g., [23], the Interface-enriched Generalized Finite Element Method (IGFEM), e.g., [24,25], and 
the Hierarchical Interface-enriched Finite Element Method (HIFEM), e.g., [26]. To the best of our knowledge, this work 
is the first attempt to address construction of a complete finite element De Rham complex in the presence of material 
discontinuities. In particular, in this paper we develop two complementary approaches for tetrahedral mesh partitions that 
dynamically construct an interface-compatible discrete Whitney complex on a mesh that is not required to conform to the 
interface.

Remark 1.1. We call an element conforming to an interface if it has a k-dimensional entity, k = 0, 1, 2, whose vertices 
all belong to the interface. Note that this does not require the entity itself to be contained in the interface, except when 
k = 0 and the entity reduces to a single vertex. This definition is equivalent to a piecewise linear approximation of the true 
interface. Such an approximation is acceptable because our focus is on the Whitney complex, which is the lowest order 
De Rham complex on simplices. In this case the error made in the approximation of the interface does not exceed the 
discretization error of the finite element spaces in the complex.

Both approaches start by decomposing elements cut by the interface into subelements that conform to the material 
boundary and then dynamically introduce new basis functions for these subelements. The principal difference between 
them is in the manner in which this basis update is performed.

In the first approach the basis functions on every cut element are replaced by basis functions of the same kind on each 
one of its subelements, thereby creating a conforming finite element space defined on a body-fitted mesh. This space can 
then be used in a standard finite element workflow with the caveat that it contains dynamic global degrees of freedom, i.e., 
any change in the interface can potentially trigger renumbering of the global degrees of freedom. This approach extends the 
Conformal Decomposition Finite Element Method (CDFEM) [23] to all spaces in the De Rham complex.

The second approach does not discard the basis functions on the cut elements but instead multiplies them by the 
indicator functions of their subelements to obtain an enriched set2 of basis functions. The latter is discontinuous and 
therefore non-conforming with respect to the spaces in the De Rham complex. To restore conformity, we constrain the 
enriched basis by suitable algebraic conditions that enforce the appropriate inter-element continuity for each Whitney space. 
This effectively expresses the constrained, interface-conforming enriched basis on the subelements entirely in terms of the 
existing non interface-conforming basis on their parent cut elements. As a result, any given Whitney element basis can be 
adapted to an evolving interface without changing the mesh topology, but at the cost of constructing the constraints to 
enforce conformity.

This approach draws upon the ideas of the algebraically constrained extended finite element method (XFEM-AC) [27,
28] and expands its scope to include the entire De Rham complex. Among the principal challenges here are to ensure 
that the constrained, interface-conforming, enriched Whitney bases continue to provide an exact sequence, which is a key 
requirement for the existence of discrete vector calculus properties. An equally important challenge is to guarantee the 
stability of the resulting XFEM-AC Whitney spaces. As in our previous work we accomplish this by showing the equivalence 
between the interface-conforming Whitney spaces obtained by the XFEM-AC and CDFEM approaches. As a result, although 
XFEM-AC involves constraints, its stability does not require verification of an inf-sup condition.

This should be contrasted with traditional ways of enforcing conformity in Heaviside-enriched nodal finite elements, 
which depend on either Lagrange multipliers or penalty terms for this purpose. Stability of these formulations can be tied 

2 This process is often referred to in the literature as “Heaviside enrichment”.
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