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A numerical method using implicit surface representations is proposed to solve the 
linearized Poisson–Boltzmann equation that arises in mathematical models for the 
electrostatics of molecules in solvent. The proposed method uses an implicit boundary 
integral formulation to derive a linear system defined on Cartesian nodes in a narrowband 
surrounding the closed surface that separates the molecule and the solvent. The needed 
implicit surface is constructed from the given atomic description of the molecules, by a 
sequence of standard level set algorithms. A fast multipole method is applied to accelerate 
the solution of the linear system. A few numerical studies involving some standard test 
cases are presented and compared to other existing results.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical modeling and numerical simulation of electrostatics of charged macromolecule-solvent systems have 
been extensively studied in recent years, due to their importance in many branches of electrochemistry; see, for instance, 
[8,23,26,27,39,53,57,60,65,71,76,89] and references therein for recent overviews of the developments in the subject.

There are roughly two classes of mathematical models for such macromolecule-solvent systems, depending on how the 
effect of the solvent is modeled: explicit solvent models in which solvent molecules are treated explicitly, and implicit sol-
vent models in which the solvent is represented as a continuous medium. While explicit solvent models are believed to be 
more accurate, they are computationally intractable when modeling large systems. Implicit models are therefore often an al-
ternative for large simulations, see [6,19,22,50,90] and references therein for recent advances. The Poisson–Boltzmann model 
is one of the popular implicit solvent models in which the solvent is treated as a continuous high-dielectric medium [16,21,
28,41,51,56,69,70,80]. This model, and many variants of it, has important applications, for instance in studying biomolecule 
dynamics of large proteins [4,5,10,12,33,90]. Many efficient and accurate computational schemes for the numerical solution 
of the model have been developed [3,7,9,18,24,30,31,36,51,54,81,88].

To introduce the Poisson–Boltzmann model, let us assume that the macromolecule has Nc atoms centered at {z j}Nc
j=1, 

with radii {r j}Nc
j=1 and charge number {q j}Nc

j=1 respectively. Let � be the closed surface that separates the region occupied by 
the macromolecule and the rest of the space. The typical choice of � is the so-called solvent excluded surface, which is defined 
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Fig. 1. A view of the “solvent excluded surface” in 2D is shown by the middle solid curve, and the narrowband �ε is shown here by the space bounded 
between the dashed curves.

as the boundary of the region outside the macromolecule which is accessible by a probe sphere with some small radius, 
say ρ0; see Fig. 1 for an illustration. We use � to denote the region surrounded by � that includes the macromolecule.

We use a single function ψ to denote the electric potential inside and outside of �. In the Poisson–Boltzmann model, ψ
solves the Poisson’s equation for point charges inside �, that is,

−∇ · (εI∇ψ(x)) =
Nc∑

k=1

qkδ(x − zk), in �

where εI denotes the dielectric constant in �. Outside �, that is in the solvent that excludes the interface �, ψ solves the 
Poisson’s equation for a continuous distribution of charges that models the effect of the solvent, that is,

−∇ · (εE∇ψ) = ρB(T ,x,ψ(x)), in R
3 \ �

where εE denotes the dielectric constant of the solvent, which often has much higher value than that of the macromolecule, 
εE � εI . The source term ρB is a nonlinear function coming from the Boltzmann distribution with T denoting the temper-
ature of the system. More precisely, for solvent containing m ionic species,

ρB(T ,x,ψ(x)) := ec

m∑
i=1

ciq̄ie
−ecq̄iψ(x)/kB T , x ∈ R

3 \ �

where ci, ̄qi are the concentration and charge of the ith ionic species, ec is the electron charge, kB is the Boltzmann constant, 
and T is the absolute temperature.

The nonlinear term ρB(T , x, ψ) in the Poisson–Boltzmann system poses significant challenges in the computational so-
lution of the system. In many practical applications, it is replaced by the linear function −κ̄2

T ψ(x) where the parameter 

κ̄T =
√

2e2I
kB T is called the Debye–Hückel screening parameter with kB , e, and I being the Boltzmann constant, the unit 

charge, and the ionic strength respectively. This leads to the linearized Poisson–Boltzmann equation (PBE) for the electro-
static potential ψ . It takes the following form

−∇ · (εI∇ψ(x)) =
Nc∑

k=1

qkδ(x − zk), in �,

−∇ · (εE∇ψ(x)) = −κ̄2
T ψ(x), in �

c
,

ψ(x)|�+ = ψ(x)|�− , on �,

εE
∂ψ

∂n |�+
= εI

∂ψ

∂n |�−
, on �,

|x|ψ(x) → 0, |x|2|∇ψ(x)| → 0, as |x| → ∞.

(1)

Here the operator ∂/∂n ≡ n(x) · ∇ denotes the usual partial derivative at x ∈ � in the outward normal direction n(x)

(pointing from � outward). The usual continuity conditions, continuity of the potential and the flux across �, are assumed, 
and the radiation condition, which requires ψ decay to zero far away from the macromolecule, is needed to ensure the 
uniqueness of solutions to the linearized Poisson–Boltzmann equation. See e.g. [3,7,10,16,30,31,50,53,70,80,81].



Download English Version:

https://daneshyari.com/en/article/6929069

Download Persian Version:

https://daneshyari.com/article/6929069

Daneshyari.com

https://daneshyari.com/en/article/6929069
https://daneshyari.com/article/6929069
https://daneshyari.com

