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Multigrid schemes for high order finite difference methods on summation-by-parts form 
are studied by comparing the effect of different interpolation operators. By using the 
standard linear prolongation and restriction operators, the Galerkin condition leads to 
inaccurate coarse grid discretizations. In this paper, an alternative class of interpolation 
operators that bypass this issue and preserve the summation-by-parts property on each 
grid level is considered. Clear improvements of the convergence rate for relevant model 
problems are achieved.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The multigrid method is a convergence acceleration technique that improves iterative solvers using grid coarsening [1,2]. 
This methodology leads to improved convergence for elliptic problems in a straightforward way [2,3], while partial differen-
tial equations with a dominant hyperbolic character are often handled with additional artificial dissipation [4,5]. Multigrid 
methods are used in various branches of applied mathematics and engineering, such as electromagnetics [6], magnetohy-
drodynamics [7] and fluid dynamics [8].

Two important components in multigrid methods are the restriction and prolongation operators which transfer the in-
formation between grids. Typically these operators are based on linear interpolation procedures, regardless of the accuracy 
of the discretization [3]. Although this is a natural choice for low order schemes, it may be inappropriate for high order 
ones. In this work we make use of a general relation between prolongation and restriction operators which was originally 
proposed in a different context [9]. The resulting interpolation operators lead to a consistent approximation at the bound-
aries and guarantee that the formal order of accuracy of the original scheme is retained at the interior nodes on the coarse 
grids.

By applying the specific grid transfer operators to Summation-by-Parts (SBP) formulations with Simultaneous-
Approximation-Terms (SATs) [10] weakly imposing the boundary conditions, we arrive at a multigrid method with provable 
energy stable discretizations on each grid level. Moreover, the procedure allows for the introduction of the stable and ac-
curate artificial viscosity procedure proposed in [11]. The resulting improved convergence of the new multigrid method is 
exemplified for several linear model problems.
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The rest of this paper is organized as follows: in Section 2 the main features of the two-level multigrid algorithm are 
presented. Section 3 introduces the SBP-SAT technique for high order finite difference discretizations. Section 4 deals with 
the construction of multigrid algorithms for linear problems using the new class of interpolation operators. In Section 5 we 
compare the effects of different prolongation and restriction operators on the multigrid convergence. Conclusions are drawn 
in Section 6.

2. The multigrid algorithm

Consider the following steady-state problem:

Lu = f , in �,

Hu = g, on ∂�,
(1)

where L is a differential operator, H is a boundary operator, f and g are given functions, and � is the domain with 
boundary ∂�. The boundary conditions are assigned in a way such that (1) is well-posed [12,13].

Remark 2.1. In this paper, we only consider linear operators L in (1).

The construction of a two-level multigrid scheme [2,3] for solving (1) consists of the following four steps:

1. Fine-grid discretization;
2. Error smoothing;
3. Coarse-grid correction;
4. Fine-grid update.

In the following sections, we will outline the main features of these four steps.

2.1. Fine-grid discretization

Consider a grid �1, here called the fine grid, on �. A discrete problem associated to (1) on the fine grid �1 has the 
general form

L1u = F, (2)

where L1 is a discrete version of the operator L in (1) which also includes the boundary conditions. The vector F is a grid 
function which approximates f on the nodes of �1, augmented with boundary data g, and u is an approximate solution 
to (1). Typically �1 has many nodes, and it is expensive to solve (2) directly. Furthermore, the discrete operator L1 is 
assumed to be invertible and have eigenvalues with strictly positive real parts.

2.2. Error smoothing

An error smoothing procedure is required prior to grid coarsening. First, we consider marching towards the solution to 
(2) in pseudo time from an initial guess u(0) by solving

wτ + L1w (τ ) = F, 0 < τ < �τ,

w (0) = u(0),
(3)

for �τ > 0 called the smoothing step. The solution to (3) is

w (�τ) = e−L1�τ u(0) +
(

I1 − e−L1�τ
)

L−1
1 F, (4)

where I1 indicates the identity matrix on �1. If the eigenvalues of L1 have strictly positive real parts, ‖w(�τ) − u‖ <
‖u(0) − u‖ for any norm.

More generally from (4), we may define a smoothing technique for (2) as

wk = Swk−1 + (I1 − S) L−1
1 F, k = 1, . . . , ν,

w0 = u(0),
(5)

where the exponential smoother Sexp = e−L1�τ yields the pseudo time-marching procedure in (4). After ν steps, the iterative 
method (5) leads to

w = Sνu(0) + (I1 − Sν
)

L−1
1 F. (6)
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