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We present an algorithm for the numerical calculation of Taylor states in toroidal and 
toroidal-shell geometries using an analytical framework developed for the solution to 
the time-harmonic Maxwell equations. Taylor states are a special case of what are 
known as Beltrami fields, or linear force-free fields. The scheme of this work relies 
on the generalized Debye source representation of Maxwell fields and an integral 
representation of Beltrami fields which immediately yields a well-conditioned second-
kind integral equation. This integral equation has a unique solution whenever the Beltrami 
parameter λ is not a member of a discrete, countable set of resonances which physically 
correspond to spontaneous symmetry breaking. Several numerical examples relevant to 
magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily 
generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A wide range of astrophysical and laboratory plasmas are in force-free equilibria [2,27,51,55] where the magnetic field B
satisfies

(∇ × B) × B = 0 (1.1)

This immediately implies that the current density J = (∇ × B)/μ0 is parallel to the magnetic field, i.e. there exists a scalar 
function λ = λ(x) such that

∇ × B = λB. (1.2)

Within the general class of linear force-free equilibria described by (1.2), Taylor states or Woltjer–Taylor states are particular 
equilibria for which λ is a spatially uniform constant given by the ratio of the magnetic energy to the magnetic helicity, 
see Chapter 11 of [6]. They play a central role in plasma physics [5,11,15,21,22,40,54,59] as the natural state resulting from 
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dissipative turbulent relaxation [50,55]. Since they satisfy the equation ∇ × B = λB with λ constant, magnetic fields in 
Taylor state configurations are a special case of a class of force-free fields called linear Beltrami fields [3,7]. Since in this 
work we will consider λ to be a given input to the solver, we will use the expressions Taylor state and linear Beltrami field
interchangeably for the remainder of this article.

Linear Beltrami fields have been extensively studied mathematically, and their properties are well understood by now [19,
25,39,43,49]. On the other hand, relatively few numerical solvers have been developed to compute them in geometries 
relevant to plasma physics. To the best of the authors’ knowledge, solvers for these problems based on integral equation 
formulations have never been constructed despite their desirable properties: access to relatively high-precision derivatives 
of the field (via analytic differentiation of the integral representation), low memory requirements (only the boundary has 
to be discretized), and overall rapid convergence of the solution (when coupled with high-order quadrature rules and a fast 
algorithm, such as a fast multipole method).

We take a moment to justify this claim. One may at first think that Taylor states in axisymmetric toroidal geometries 
can be viewed as a special class of more general Grad–Shafranov equilibria [32,52], as was for instance done in [14]. 
From this point of view, Grad–Shafranov solvers relying on integral formulations [44,48] could be used to compute linear 
Beltrami fields. However, this approach is not satisfactory for the following reasons. First, a Grad–Shafranov solver would 
not take advantage of the particular properties of linear Beltrami fields. Second, certain applications [11,40] require the 
computation of linear Beltrami fields in hollow toroidal shells. Grad–Shafranov solvers are usually not designed to handle 
such geometries. Finally, and most importantly, Taylor states in axisymmetric domains may not be axisymmetric themselves 
[55]. By definition, the Grad–Shafranov equation does not apply to these fully three-dimensional, bifurcated states.

The purpose of this article is to present the first integral equation solver for the calculation of Taylor states in toroidal 
regions. While preliminary results from this work were given in [25], details of the actual solver were not provided. A sep-
aration of variables numerical solver for the full exterior axisymmetric electromagnetic scattering problem from perfect 
conductors is discussed in [26], but this work does not address the computation of interior eigenfunctions nor solve the 
boundary value problem with data on the normal components of E , H . We close this gap with the present work. The 
integral formulation we present here applies to both toroidally axisymmetric and non-axisymmetric domains, but thus far 
our numerical solver can only treat the first situation. We will therefore restrict the description of the numerical solver to 
that case. Let us stress again that while the domain is axisymmetric, the Taylor state itself may not be, and the solver we 
present here can compute these non-axisymmetric equilibria. As such, it may be applied to the computation of magnetohy-
drodynamic equilibria in spheromaks [29], reversed field pinches [56], and in tokamaks for start-up scenarios [5] and the 
study of magnetohydrodynamic instabilities [31,34].

The mathematically well-posed form of the problem is as follows. We construct numerical solutions to the Beltrami 
boundary-value problem given by:

∇ × B = λB in �,

B · n = 0 on �,
(1.3)

where λ is a real number given as input to the solver, � is an axisymmetric toroidal domain, and � = ∂� is the (smooth) 
boundary of the region �. Depending on the genus of �, additional (topological) constraints on B must be added in order 
for (1.3) to be well-posed. For Taylor states in laboratory plasmas, it is often natural to take these constraints as conditions 
on the toroidal and poloidal flux of B [40,55], see Fig. 1(a). In a genus-two toroidal flux shell (see Fig. 1(b)) two conditions 
must be imposed:∫

St

B · da = �tor and
∫
S p

B · da = �pol, (1.4)

where da = n da, with da being the surface area element and n the oriented normal along the surfaces St and S p . On the 
other hand, if the toroidal domain is not hollow (genus-one), only one additional flux condition is necessary. The need for 
extra conditions (1.4) to ensure well-posedness stems from the multiply-connectedness of the boundary � – namely, the 
existence of harmonic surface vector fields on � and interior volume λ-Neumann vector fields in � [23]. Readers interested in 
more details on the well-posedness of the boundary value problem ((1.3), (1.4)) may read references [25,43].

Our integral equation formulation is based on the observation that if ∇ × B = λB , then the pair {E, H} = {i B, B} satisfies 
the time-harmonic Maxwell’s equations in vacuum, with λ playing the role of a wavenumber. Boundary conditions on the 
normal component of B then correspond to boundary conditions on the normal components of E and H . This fact, coupled 
with the symmetry of E and H , makes it natural to represent B using generalized Debye sources, as in [23,25]. Application 
of the boundary condition in (1.3) and flux constraints (1.4) to the generalized Debye source representation immediately 
yields a second-kind integral equation which can be solved with standard techniques.

The paper is organized as follows. In Section 2, we establish the link between linear Beltrami fields and the generalized 
Debye representation at the heart of our integral equation formulation. In Sections 3 and 4, we derive the second-kind 
integral equations for the densities of the vector and scalar potentials in the generalized Debye representation of the Bel-
trami field. Section 3 applies to toroidal regions, while Section 4 applies to hollow toroidal shells. Section 5 describes our 
numerical method to compute the solution to the integral equations, and to subsequently evaluate the Beltrami fields. In 
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