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Abstract

While there is currently a lot of enthusiasm about “big data”, useful data is
usually “small” and expensive to acquire. In this paper, we present a new
paradigm of learning partial differential equations from small data. In partic-
ular, we introduce hidden physics models, which are essentially data-efficient
learning machines capable of leveraging the underlying laws of physics, ex-
pressed by time dependent and nonlinear partial differential equations, to
extract patterns from high-dimensional data generated from experiments.
The proposed methodology may be applied to the problem of learning, sys-
tem identification, or data-driven discovery of partial differential equations.
Our framework relies on Gaussian processes, a powerful tool for probabilistic
inference over functions, that enables us to strike a balance between model
complexity and data fitting. The effectiveness of the proposed approach is
demonstrated through a variety of canonical problems, spanning a number
of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-
Sivashinsky, and time dependent linear fractional equations. The method-
ology provides a promising new direction for harnessing the long-standing
developments of classical methods in applied mathematics and mathemati-
cal physics to design learning machines with the ability to operate in complex
domains without requiring large quantities of data.
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