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Weak constraint four-dimensional variational data assimilation is an important method 
for incorporating data (typically observations) into a model. The linearised system 
arising within the minimisation process can be formulated as a saddle point problem. 
A disadvantage of this formulation is the large storage requirements involved in the linear 
system. In this paper, we present a low-rank approach which exploits the structure of the 
saddle point system using techniques and theory from solving large scale matrix equations. 
Numerical experiments with the linear advection–diffusion equation, and the non-linear 
Lorenz-95 model demonstrate the effectiveness of a low-rank Krylov subspace solver when 
compared to a traditional solver.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Data assimilation is a method for combining a numerical model with observations obtained from a physical system, in 
order to create a more accurate estimate for the true state of the system. One example where data assimilation is used is 
numerical weather prediction, however it is also applied in areas such as oceanography, glaciology and other geosciences.

A property which these applications all share is the vast dimensionality of the state vectors involved. In numerical 
weather prediction the systems have variables of order 108 [24]. In addition to the requirement that these computations 
to be solved quickly, the storage requirement presents an obstacle. In this paper we propose an approach for implementing 
the weak four-dimensional variational data assimilation method with a low-rank solution in order to achieve a reduction in 
storage space as well as computation time. The approach investigated here is based on a recent paper [38] which imple-
mented this method in the setting of PDE-constrained optimisation. We introduce here a low-rank modification to GMRES 
in order to generate low-rank solutions in the setting of data assimilation.

This method was motivated by recent developments in the area of solving large sparse matrix equations, see [3,23,30,32,
36,37], notably the Lyapunov equation

A X + X AT = −B BT

in which we solve for the matrix X , where A, B and X are large matrices of matching size. It is known that if the right 
hand side of these matrix equations are low-rank, there exist low-rank approximations to X [21]. There are a number of 
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methods which iteratively generate low-rank solutions; see e.g. [13,26,30,32,36], and it is these ideas which are employed 
in this paper.

Alternative methods [14,31,39] have been considered for computing low-rank solutions, based on sequential data assim-
ilation methods such as the Kalman filter [22,31]. Furthermore there have been developments in applying traditional model 
reduction techniques such as Balanced Truncation [29] and Principal Orthogonal Decomposition (POD) to data assimilation; 
e.g. [10,25]. In this paper we take a different approach, the data assimilation problem is considered in its full formulation, 
however the expensive solve of the linear system is done in a low-rank in time framework.

In the next section we introduce a saddle point formulation of weak constraint four dimensional variational data assim-
ilation. Section 3 explains the connection between the arising linear system and the solution to matrix equations. We also 
introduce a low-rank approach to GMRES, and consider several preconditioning strategies. Numerical results are presented 
in Section 4, with an extension to time-dependent systems considered in Section 5.

2. Variational data assimilation

Variational data assimilation, initially proposed in [34,35] is one of two families of methods for data assimilation, the 
other being sequential data assimilation which includes the Kalman Filter and modifications [14,22,31].

We consider the discrete-time non-linear dynamical system

xk+1 = Mk(xk) + ηk, (2.1)

where xk ∈ R
n is the state of the system at time tk and Mk : Rn → R

n is the non-linear model operator which evolves the 
state from time tk to tk+1 for k = 0, . . . N − 1. The model errors are denoted ηk , and are assumed to be Gaussian with zero 
mean and covariance matrix Q k ∈R

n×n .
Observations of this system, yk ∈ R

pk at time tk for k = 0, . . . N are given by

yk = Hk(xk) + εk, (2.2)

where Hk : Rn → R
pk is an observation operator, and εk is the observation error. In general, pk � n. This observation 

operator Hk may also be non-linear, and may have explicit time dependence. The observation errors are assumed to be 
Gaussian, with zero mean and covariance matrix Rk ∈R

pk×pk .
We assume that at the initial time we have an a priori estimate of the state, which we refer to as the background state, 

and denote xb . This is commonly the result of a short-range forecast, or a previous assimilation, and is typically taken to be 
the first guess during the assimilation process. We assume that this background state has Gaussian errors with covariance 
matrix B ∈R

n×n .

2.1. Four dimensional variational data assimilation (4D-Var)

Four dimensional variational data assimilation (4D-Var) is so called for three spatial dimensions, plus time, and to dif-
ferentiate it from three-dimensional variational data assimilation (3D-Var), where we do not consider multiple observation 
times. In 4D-Var, we find an initial state which minimises both the weighted least squares distance to the background 
state xb , and the weighted least squares distance between the model trajectory of this initial state xk and the observa-
tions yk for an assimilation window [t0, tN ]. Mathematically, we can write this as a minimisation of a cost function, e.g. 
argmin J (x), where

J (x) = 1
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(2.3)

where x = [xT
0 , xT

1 , . . . , xT
N ]T , and xk is the model state at each timestep tk for k = 0, . . . , N . This is known as weak constraint

4D-Var. The assumption of a perfect model, gives rise to strong constraint 4D-Var, and a simplification of the cost function, 
notably the removal of the Jq term.

The additional cost of weak constraint 4D-Var, and the difficulties in computing Q k mean that it is not widely imple-
mented in real world systems. However, accounting for this model error (with suitable covariances) would lead to improved 
accuracy, and the added potential of longer assimilation windows [17,18].
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