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Implicit dealiasing is a method for computing in-place linear convolutions via fast 
Fourier transforms that decouples work memory from input data. It offers easier memory 
management and, for long one-dimensional input sequences, greater efficiency than 
conventional zero-padding. Furthermore, for convolutions of multidimensional data, the 
segregation of data and work buffers can be exploited to reduce memory usage and 
execution time significantly. This is accomplished by processing and discarding data as it is 
generated, allowing work memory to be reused, for greater data locality and performance. 
A multithreaded implementation of implicit dealiasing that accepts an arbitrary number of 
input and output vectors and a general multiplication operator is presented, along with 
an improved one-dimensional Hermitian convolution that avoids the loop dependency 
inherent in previous work. An alternate data format that can accommodate a Nyquist 
mode and enhance cache efficiency is also proposed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The convolution is an important operator in a wide variety of applications ranging from statistics, signal processing, im-
age processing, and the numerical approximation of solutions to nonlinear partial differential equations. The convolution of 
two sequences {Fk}k∈Z and {Gk}k∈Z is 

∑
p∈Z F p Gk−p . In practical applications, the inputs {Fk}m−1

k=0 and {Gk}m−1
k=0 are of finite 

length m, yielding a linear convolution with components 
∑k

p=0 F p Gk−p for k = 0, . . . , m − 1. Computing such a convolution 
directly requires O(m2) operations, and roundoff error is a significant problem for large m. It is therefore preferable to 
make use of the convolution theorem, harnessing the power of the fast Fourier transform (FFT) to map the convolution 
to a component-wise multiplication. This reduces the computational complexity of a convolution to O(m log m) [6,8] while 
improving numerical accuracy [9].

Since the FFT considers the inputs to be periodic, the direct application of the convolution theorem results in a circular 
convolution, due to the indices being computed modulo m. Removing these extra aliases from the periodic convolution to 
produce a linear convolution is called dealiasing.

We give a brief overview of the dealiasing requirements for different types of convolutions in Section 2. The standard 
method for dealiasing FFT-based convolutions is to pad the inputs with a sufficient number of zero values such that the 
aliased contributions are all zero, as shown in Fig. 1. In Section 3, we generalize the method of implicit dealiasing [4] to 
handle an arbitrary number of input and output vectors, with a general spatial multiplication operator. This allows im-
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Fig. 1. Computing a 1D convolution via explicit zero padding.

plicit dealiasing to be efficiently applied to autocorrelations and pseudospectral simulations of nonlinear partial differential 
equations (e.g. in hydrodynamics and magnetohydrodynamics). We also discuss key technical improvements that allow im-
plicit dealiasing to be fully multithreaded. For an efficient in-place implementation of the centered Hermitian convolution, 
it was necessary to unroll the outer loop partially so that interacting wavenumbers can be simultaneously processed. This 
loop unrolling offers another advantage: it removes the loop interdependence that prevented Function conv in [4] from 
being fully parallelized. For the construction of 2D and 3D convolutions, discussed in Section 4, the advantage of our new 
1D convolution routines (relative to those in Ref. [4]) is the better pipelining afforded by loop interdependence, not their 
parallelizability, as the multithreading is now done at a higher level. The higher dimensional convolutions are decomposed 
into a sequence of lower-dimensional convolutions, each of which are run on a separate thread. We demonstrate that multi-
threaded implicit dealiasing in dimensions greater than one uses far less memory and is much faster than explicit dealiasing. 
The accomplishments of this work and future directions for research are summarized in Section 5. Implicitly dealiased con-
volution routines are publicly available in the open-source software library FFTW++ [5], which is built on top of the widely 
used FFTW library [7].

2. Dealiasing requirements for convolutions

To compute the standard linear convolution 
∑k

p=0 F p Gk−p for k ∈ {0, . . . , m − 1}, the data is padded with m zeroes for 
a total FFT length of 2m. We refer to these inputs as non-centered and the paddings as 1/2 padding. If the input data is 
multidimensional with size m1 × . . . × md , then the data must be zero padded to 2m1 × . . . × 2md , increasing the buffer size 
by a factor of 2d .

For pseudospectral simulations, it is convenient to shift the zero wavenumber in the transformed data to the middle of 
the array. In this case, the inputs are {Fk}m−1

k=−m+1 and {Gk}m−1
k=−m+1, which we refer to as centered, and their convolution has 

components 
∑m−1

p=k−m+1 F p Gk−p for k = −m + 1, . . . , m − 1. Convolutions on centered inputs require less padding than on 
non-centered inputs: data of length 2m − 1 needs to be padded only to length 3m − 2 (normally extended to 3m); this is 
called 2/3 padding [11]. Explicit zero padding increases the d-dimensional buffer size in this case by a factor of (3/2)d .

A binary convolution can be generalized to an n-ary operator ∗(F1, . . . , Fn)k = ∑
p1,...,pn

F p1 · · · F pn δp1+...+pn,k , where δ is 
the Kronecker delta. For non-centered inputs, an n-ary convolution could be computed as a sequence of binary convolutions 
using 1/2 padding. However, for centered inputs with both negative and positive frequencies, each binary convolution 
would have to be padded further to eliminate all aliased interactions [12]. As a result, n-ary convolutions benefit greatly 
from implicit dealiasing [4].

We consider a generalized convolution operation that takes A inputs and produces B outputs, where the multiplication 
performed in the transformed space can be an arbitrary component-wise operation. In order to make use of 1/2 padding or 
2/3 padding (for noncentered or centered inputs, respectively), the multiplication operator must be quadratic; if the multi-
plication operator is of higher degree, one must extend the padding to remove undesired aliases. To compute a convolution 
with A inputs and B outputs using the convolution theorem, one performs A backward FFTs to transform the inputs, applies 
the appropriate multiplication operation on the transformed data, and then performs B forward FFTs to produce the final 
outputs, for a total of A + B FFTs.

The choice of multiplication operator determines the type of convolution. Let { f j} be the inverse Fourier transform of 
{Fk}. An autoconvolution can be computed with just two transforms using A = B = 1 and the operation f j → f 2

j , while an 
autocorrelation would use f j → f j f̄ j , where f̄ j denotes the complex conjugate of f j . For the standard binary convolution, 
there are two inputs and one output, and the multiplication operation is ( f j, g j) → f j g j .

The nonlinear advective term of the 2D incompressible Navier–Stokes vorticity equation can be computed with the 
operation (ux, u y, ∂ω/∂x, ∂ω/∂ y) → (ux∂ω/∂x + u y∂ω/∂ y), where u = (ux, u y) is the 2D velocity and ω = ẑ · ∇ × u is the 
z-component of the vorticity; this requires a total of five FFTs (A = 4 and B = 1). As shown in Appendix A, it is possible to 
reduce the FFT count for this case to four, with A = B = 2. Similarly, in three dimensions, Basdevant [2] showed that the 
number of FFT calls can be reduced from nine to eight, with A = 3 and B = 5. For incompressible 3D magnetohydrodynamic 
(MHD) flows the operation is (u, ω, B, j) → (u ×ω + j × B, u × B), where u is the velocity, ω = ∇ × u is the vorticity, B is 
the magnetic field, and j is the current density (A = 12, B = 6) [13]. However, in Appendix A we show that Basdevant’s 
technique can be used to reduce the number of calls to 17 (A = 6, B = 11). For the Navier–Stokes and MHD equations, 
the operation is quadratic and the convolution is binary (n = 2), with a padding ratio of 2/3 (since the Fourier modes are 
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