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It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/
oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demon-
stration of a scalable and practical framework remains elusive. Motivated by recent 
progress in particle-based methods when applied to convection dominated flows, this work 
presents a fully Lagrangian method for solving the inviscid shallow water equations on a 
rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at 
the poles, the governing equations are solved in Cartesian coordinates, augmented with 
a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the 
sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor 
detection and parallelization. The method is applied to a suite of canonical test cases, and 
conservation, accuracy, and parallel performance are assessed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Accurate and conservative methods for convection-dominated flows in spherical geometries is of key importance in 
geophysical fluid mechanics. To date, numerical implementations of such flows typically consider an Eulerian, or semi-
Lagrangian frame of reference. In a recent review on conservation properties of atmospheric numerical model dynamical 
cores, Thuburn [1] concludes that it might be possible to obtain a greater number of conservation properties by moving to 
a fully Lagrangian, rather than Eulerian formulation. In the same year, Alam and Lin [2] proposed a fully Lagrangian atmo-
spheric model for a two-dimensional sea-breeze circulation problem. The authors observed that in comparison to traditional 
semi-Lagrangian and Eulerian finite-difference models, the fully Lagrangian simulations were more computationally efficient 
and exhibited higher accuracy when integrated over long time durations. Meanwhile, to the best of our knowledge, a purely 
Lagrangian method for atmospheric flows in spherical coordinates remains elusive, and a practical and scalable framework 
has yet to be introduced.

Atmospheric motion is highly turbulent and greatly influences a wide range of important processes, including transport 
of water vapor and atmospheric dust, the formation of clouds, and heat transfer [3]. Due to the vast scale differences 
between the horizontal flow and vertical motion, the shallow water equations are typically used as a first step towards the 
construction of global atmospheric models. A wide range of Eulerian and semi-Lagrangian techniques for the shallow water 
equations in spherical geometries can be found in the literature (see, e.g., [4–14]). In a spherical coordinate system, lines 
of constant longitude converge at the poles, resulting in the coordinate system to become singular there. Some of the first 
attempts to alleviate the issues related to the pole singularity involved limiting the latitude −85◦ ≤ θ ≤ 85◦ [4], introducing 
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filtering at the pole, or solving the equations of motion in Cartesian coordinates on overset grids [15,16]. While overset 
grid methods have shown great promise in recent years, they typically involve interpolation at grid boundaries that can 
degrade the global conservation properties of the overall method, require memory-intensive algorithms for parallelization, 
or replace the pole singularities with multiple weaker singularities at the intersection of grid boundaries [13]. As noted 
by Williamson [17], the pole problem is not a fundamental problem but rather one of economics. For example, the time 
step used in explicit finite difference schemes is restricted by the Courant–Fredrich–Levy (CFL) condition based on the wind 
speed and grid spacing, which becomes excessively small near the poles. To date, a variety of established methods exist 
that define velocities as fluxes through cell edges rather than zonal and meridional components, and thus avoids the pole 
singularity altogether (e.g., [18–20]).

By abandoning the notion of a grid, it becomes possible to construct a method with geometric flexibility free of the 
aforementioned challenges. To this end, particle-based methods have been receiving much attention as an alternative tool 
for solving partial differential equations (PDEs) on arbitrary geometries. Flyer and Wright [21] demonstrated that the radial 
basis function (RBF) spatial discretization is capable of solving purely hyperbolic PDEs on a sphere, and outperforms tradi-
tional spectral methods in terms of the number of discrete points and time-step size needed to achieve a given accuracy. 
A key benefit of the RBF method (and in general any particle-based method) is that the algorithmic complexity does not 
increase with the dimension of the problem. Flyer and Wright [12] later derived the first shallow water model on a sphere 
using RBFs. However, global RBFs require dense matrix solves that typically cost O

(
N3
)

operations to create the differ-
entiation matrices, which is not practical for high resolution or high-dimensional problems. A local RBF-generated finite 
difference approach was later introduced to alleviate this issue by only considering neighboring particles when construct-
ing the derivative operators [22]. The method was shown to be computationally efficient with spectral-like accuracy that 
scales with the number of neighboring particles. While this represents a promising new approach for large-scale geophysical 
modeling, it has to date only been demonstrated using a moderate number of particles on a single CPU. Furthermore, the 
particles are fixed in space, and thus the benefits of Lagrangian particle methods (e.g., exact treatment of the advection 
term) cannot be leveraged.

The purpose of the present work is to extend the techniques used with RBF methods to a Lagrangian framework that 
enables efficient parallelism. By allowing the particles to evolve in a Lagrangian manner, and constructing difference op-
erators using a kernel approximation (as opposed to basis functions that require linear solves), the equations reduce to a 
smooth particle hydrodynamics (SPH) formulation on a sphere. SPH has received much attention in the past three decades 
for a wide range of applications (see, e.g., [23] and references therein), though its use for atmospheric flows (and spherical 
geometries in general) are non-existent.

The development of SPH for the shallow water equations has received much attention in the past two decades [24–
30]. The majority of this work focuses on improving stability properties, free surface boundary treatment (though not 
relevant to the present work), and conservation properties. Frank and Reich [31] showed that SPH applied to the shallow 
water equations satisfies an exact circulation theorem, which leads to statements of conservation of potential vorticity 
and generalized enstrophies. While exact mass conservation is intrinsic to the SPH approach, they demonstrated discrete 
conservation of circulation as well. However, stability becomes a main concern when particles become highly disordered. 
Ata and Soulaïmani [25] addressed this problem by proposing an artificial dissipation term based on Riemann solvers. 
Rodriguez-Paz and Bonet [26] presented a corrected variational SPH formulation for shallow water flows to conserve both 
the total mass and momentum. De Leffe et al. [27] later proposed an algorithm to periodically redistribute the particles in 
order to improve solution accuracy. Vacondio et al. [30] derived a corrected SPH algorithm to properly account for complex 
domain topography under the assumption that the particles are equally distributed. Soon after, Xia et al. [29] relaxed this 
constraint by introducing an improved shock-capturing scheme to yield accurate solutions of the shallow water equations 
over a non-uniform topography.

Using these ideas, this paper presents an SPH formulation in spherical geometries to model global-scale atmospheric 
flows. To avoid singularities at the poles, the equations are solved in a Cartesian coordinate system augmented with a 
Lagrange multiplier that constrains the particles to the surface of the sphere. Difference operators are derived using a 
kernel approximation that is a function of the great-arc distance between particles. A modified nearest-neighbor detection 
algorithm is presented using an auxiliary grid in spherical coordinates that allows for accurate detection near the poles. 
Finally, conservation, accuracy, and computational efficiency are assessed for a range of canonical flows.

2. Governing equations

2.1. Cartesian form of the shallow water equations on a rotating sphere

Consider a fluid parcel located on the surface of a sphere of radius a with coordinates (λ, θ)T , where λ ∈ (0,2π ] is the 
longitude and θ ∈ [−π/2,π/2] is the latitude. In a latitude–longitude grid, lines of constant longitude converge at the poles 
(i.e., θ = ±π/2), requiring special care to avoid excessively small timestep restrictions. To avoid the resulting singularity, the 
present study considers the three-dimensional Cartesian form of the shallow water equations.

Thus, three components of velocity are solved for, u = (u, v, w)T , with coordinates x = (x, y, z)T . The Cartesian form of 
the shallow water equations in a frame of reference rotating with angular velocity � are given by



Download English Version:

https://daneshyari.com/en/article/6929155

Download Persian Version:

https://daneshyari.com/article/6929155

Daneshyari.com

https://daneshyari.com/en/article/6929155
https://daneshyari.com/article/6929155
https://daneshyari.com

