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This paper investigates the computation of the forced response of elastic open waveguides 
with a numerical modal approach based on perfectly matched layers (PML). With a 
PML of infinite thickness, the solution can theoretically be expanded as a discrete sum 
of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation 
modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), 
the waveguide cross-section is discretized and the PML must be truncated to a finite 
thickness. This truncation transforms the continuous sum into a discrete set of PML 
modes. To guarantee the uniqueness of the numerical solution of the forced response 
problem, an orthogonality relationship is proposed. This relationship is applicable to 
any type of modes (trapped, leaky and PML modes) and hence allows the numerical 
solution to be expanded on a discrete sum in a convenient manner. This also leads to 
an expression for the modal excitability valid for leaky modes. The physical relevance 
of each type of mode for the solution is clarified through two numerical test cases, a 
homogeneous medium and a circular bar waveguide example, excited by a point source. 
The former is favourably compared to a transient analytical solution, showing that PML 
modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows 
that the PML mode contribution yields the long-term diffraction phenomenon whereas 
the leaky mode contribution prevails closer to the source. The leaky mode contribution is 
shown to remain accurate even with a relatively small PML thickness, hence reducing the 
computational cost. This is of particular interest for solving three-dimensional waveguide 
problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is 
handled in a third numerical example by considering a buried square bar.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Context and state-of-the-art

Elastic guided waves are interesting for many applications involving elongated structures (e.g. non-destructive evaluation 
(NDE), structural health monitoring (SHM), exploration geophysics...), because of their ability to propagate over large dis-
tances. When the structure (the core) is embedded into a large solid matrix, it can be considered as an open waveguide 
(unbounded in the transverse direction). Such a configuration typically occurs in civil engineering and in geophysics for 
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example. Contrary to waveguides in vacuum (closed waveguides), most of the waves in open waveguides are attenuated by 
leakage in the surrounding medium as they propagate. Moreover, the underlying physics is deeply transformed.

Indeed, in open waveguides, three main kinds of modes are distinguished: trapped modes, radiation modes, and leaky 
modes. Trapped modes propagate without leakage attenuation along the waveguide axis and decay exponentially in the 
transverse direction. These waves are confined in the core of the waveguide or at the interface. Their existence depends on 
material contrasts between the core and the surrounding medium [1]. Radiation modes are standing waves in the transverse 
direction, which are propagative or evanescent in the axis direction [2,3]. Finally, leaky modes propagate with leakage 
attenuation along the waveguide axis. These modes dramatically grow exponentially in the transverse direction [2,4,5].

Modes are computed by considering the source-free problem. This can be done by analytical methods (e.g. the Thomson–
Haskell [6,7], the stiffness matrix [8] or the global matrix [9] methods), which are yet limited to canonical waveguide 
geometries. Numerical methods are well-suited for more complex geometries. The idea is then to discretize only the cross-
section of the waveguide while describing analytically the direction of the wave propagation. In closed waveguides, this 
approach yields a linear eigenvalue problem. It has been applied under various names in the literature, such as the ex-
tended Ritz technique [10,11]; the thin layer method (TLM) for stratified waveguides in geophysics [12,13]; the strip-element 
method [14], the Semi-Analytical Finite Element method (SAFE) [15,16] or more recently the Scaled Boundary Finite Element 
Method (SBFEM) [17,18] in ultrasonics. In this paper, this approach will be referred to as waveguide formulation to avoid the 
use of acronyms.

Extending the waveguide formulation to open waveguides is not straightforward because of the unbounded nature of 
the problem in the transverse direction. This difficulty is enhanced by the transverse growth of leaky modes. Therefore, the 
waveguide formulation must be coupled to other techniques to numerically compute the modes of open waveguides.

The first class of methods avoids the discretization of the embedding medium by using appropriate boundary conditions. 
The waveguide formulation has been combined with the boundary element method to model three-dimensional waveg-
uides immersed in fluids [19,20] or embedded in solids [21]. Similarly, exact boundary conditions have been proposed for 
two-dimensional waveguides (plates and cylinders) immersed in fluids [22]. All of these boundary conditions lead to a 
highly non-linear eigenproblem that is difficult to solve. The latter can be linearized in the case of two-dimensional plates 
immersed in perfect fluids [23,24]. In the case of high-contrast solid waveguides, the waveguide formulation can also be 
coupled to an approximate condition (the so-called dashpot boundary condition) [25]. With this approximation, the eigen-
problem remains linear.

The second class of methods requires a discretization of the surrounding medium, which must be truncated. The eigen-
problem remains linear. To avoid spurious reflections due to truncation, the waveguide formulation have been combined 
with non-reflecting [26] and continued-fraction absorbing [27] boundary conditions in fluids, or paraxial approximation in 
solids [13,28]. Absorbing layers of artificially growing damping can also be used to simulate fluid [29] or solid [30] infinite 
media. Another technique consists in using a Perfectly Matched Layer (PML) to model the infinite surrounding medium 
(solid or fluid) [31–36]. Contrary to absorbing layers, the PML avoids most spurious reflections from the layer, which allows 
its thickness to be greatly reduced. Moreover, it have been shown that the computation of leaky modes with a PML is 
mathematically relevant (see Ref. [37] for scalar wave problems).

As far as the forced response problem is concerned, modal expansion methods have been widely applied in closed waveg-
uides [38]. However, their application to open elastic waveguides is more intricate and has been barely considered in the 
literature. With a numerical approach, the particular case of two-dimensional plates immersed in fluids has recently been 
handled by a waveguide formulation with exact boundary conditions [24]. The case of a stratified plate over or between 
half-spaces has been treated using a PML in Ref. [36].

Theoretically, the forced response of an open waveguide can be expanded on trapped modes and radiation modes [2,3,
39], such that the displacement field can be symbolically written as:

u(r,ω) =
∑

trapped +
∫

radiation modes (1)

where, in addition to trapped modes, complex poles of backward type are also likely to occur depending on the problem 
type [40,41]. Let us briefly recall the origin of Eq. (1). In the wavenumber domain, the solution of the problem is a multival-
ued function owing its dependence on the transverse wavenumber of the unbounded medium. The transverse wavenumber 
is indeed the square root of a complex number on a two-sheeted Riemann surface. To evaluate analytically the inverse spa-
tial Fourier transform of the solution, a branch cut is defined separating the proper Riemann sheet (where trapped modes 
occur) from the improper Riemann sheet (where leaky modes occur). Hence, the inverse transform integration is performed 
only on the proper sheet and gives rise [see Eq. (1)] to the discrete sum of trapped modes and to the continuum of radi-
ation modes, which represents the branch cut contribution. This continuum is characteristic of the unboundedness of the 
modal problem and is difficult to manipulate from a mathematical point of view. In elastodynamics, there are two continua 
instead of one because two transverse wavenumbers occur (longitudinal and shear waves) [42,43]. The continua can actu-
ally be approximated with a convenient discrete set of leaky modes, e.g. using the steepest descent method [39,40]. This 
approximation is valid in a zone restricted near the core, in which leaky modes can provide useful practical information 
such as axial attenuation and travelling velocity of waves packets [44].

In a recent work [45], the authors have shown that when the surrounding medium is modified by an infinite PML, the 
forced response can theoretically be obtained with a modal expansion on trapped modes, revealed leaky modes and two 
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