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Is it possible to recover the position of a source from the steady-state fluxes of Brownian 
particles to small absorbing windows located on the boundary of a domain? To address this 
question, we develop a numerical procedure to avoid tracking Brownian trajectories in the 
entire infinite space. Instead, we generate particles near the absorbing windows, computed 
from the analytical expression of the exit probability. When the Brownian particles are 
generated by a steady-state gradient at a single point, we compute asymptotically the 
fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in 
two dimensions, which agree with stochastic simulations. We also derive an expression for 
the splitting probability between small windows using the matched asymptotic method. 
Finally, when there are more than two small absorbing windows, we show how to 
reconstruct the position of the source from the diffusion fluxes. The present approach 
provides a computational first principle for the mechanism of sensing a gradient of 
diffusing particles, a ubiquitous problem in cell biology.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recovering the source location from incomplete information about the emitting signal is a generic problem in several 
fields of science, such as finding an emitter in signal processing, the food source by smelling a few molecules and many 
more. In the context of cell biology, the question of how a cell can sample its environment and decide its final destination 
remains open, but it starts with the detection of an external gradient concentration that the cell must use to transform cell 
positional information into its genetic specialization and differentiation [30,12].

During axonal growth and guidance, the growth cone (which is the tip of a neuronal cell) uses external concentration 
gradients [10,25] to decide whether to continue moving or to stop, to turn right or left. Bacteria and spermatozoa can orient 
themselves in various chemotactical or mechanical gradients [2,11]. However, most models in the current literature that are 
concerned with addressing these questions rely on computing the flux to an absorbing or reflecting ball [4], an absorbing 
or permeable ball [9,1], or a single receptor sphere [17], all of which is insufficient to differentiate between concentrations 
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to the left or right of the cell. To enable sensing of this difference, the detectors, modeled here as small absorbing windows, 
should be considered individually.

We compute here in the first part the steady-state fluxes of Brownian particles to small absorbing windows located on 
the boundary of a an infinite domain. Computing the fluxes of Brownian particles moving inside a bounded domain to 
small absorbing windows located on a boundary falls into the narrow escape problems [19,13,15,16,7,21] and has also been 
studied numerically [20]. However, the mean passage time to a small hole becomes infinite in an unbounded domain due 
to long excursions to infinity of Brownian trajectories. This difficulty is resolved here by computing the flux directly using 
two methods: first, we compute the flux of Brownian particles to small absorbers located on the half-plane, a disk in R2

and in a narrow band. The asymptotic computations are obtained by matched asymptotics of Laplace’s equation in infinite 
domains.

In the second part, we develop a mixed numerical procedure to avoid tracking Brownian trajectories in the entire infinite 
space. We generate particles near the absorbing windows, computed from the analytical expression of the exit probability 
on an artificial boundary without introducing any artifacts [23,24]. This method avoids the costly computation of particle 
trajectories in the unbounded environment (e.g. extracellular space in the brain or cells moving in two dimensional cham-
ber), containing large excursions away from the cell, thereby allowing direct simulations of Brownian trajectories in the 
region of interest close to the cell. In the absence of such a procedure, these simulations would be next to impossible to 
perform due to the aforementioned infinite mean passage time.

We show that the results of both independent methods (Asymptotic and numerical) agree. The local geometry and 
distribution of windows does matter for the reconstruction of the source position: we show that it is indeed possible to 
recover the source of a gradient already with three receptors. Finally, the location of the windows might also be critical 
for the sensitivity of detection: for example, the flux of Brownian particles to small targets depends crucially on their 
localization [15,14,7,21,16,19]. In summary, the manuscript is organized as follows. First, we compute asymptotically the 
flux of Brownian particles to receptors. Second, we introduce the mixed simulation method. In the third part, we present 
several applications to various geometry: half-space, a disk and a disk in a narrow band. In the fourth and last section, we 
apply the methods to reconstruction the source location.

2. Fluxes of Brownian particles to small targets in an open space

Brownian molecules are produced by a steady-state source located at position x0 in an open space such as the two-
dimensional real space R2. The steady-state distribution of particles, P0, is the solution of the Green’s function

−D�P0(x) = Q δ(x − x0) for x ∈ R
2 (1)

where the parameter Q > 0 measures the injection rate of particles. We study here the flux received by an obstacle �
containing N-small absorbing windows ∂�1 ∪ . . .∪∂�N on its boundary ∂�. The fluxes of diffusing particles on the windows 
can be computed from solving the mixed boundary value problem (we now set Q = 1) [16]

−D�P0(x) = δ(x − x0) for x ∈ R
2 \ � (2)

∂ P0

∂n
(x) = 0 for x ∈ ∂� \ (∂�1 ∪ . . . ∪ ∂�N)

P0(x) = 0 for x ∈ ∂�1 ∪ . . . ∪ ∂�N

The reflecting boundary condition accounts for the impenetrable walls and diffusing molecules are reflected on the surface 
∂�r = ∂� \ (∂�1 ∪ . . . ∪ ∂�N ). The absorbing boundary condition on each window ∂�1 ∪ . . . ∪ ∂�N represents the extreme 
case where the binding time of particles is fast and the particle trajectories are terminated.

Although the probability density P0(x) diverges when |x| → ∞, we are interested in the splitting probability between 
windows, which is the ratio of the steady-state flux at each hole divided by the total flux through all windows:

Jk =

∫
∂�k

∂ P0(x)

∂n
dSx

∑
q

∫
∂�q

∂ P0(x)

∂n
dSx

. (3)

In two-dimensions, due to the recurrent property of the Brownian motion, the probability to hit a window before going to 
infinity is one, thus the total flux is one:∑

q

∫
∂�q

∂ P0(x)

∂n
dSx = 1. (4)

We shall now compute the fluxes asymptotically for three different configurations: 1 – when the windows are distributed 
on a line at the boundary of the half-plane, 2 – when there are located on a disk in the entire space, and 3 – when the disk 
is located in a narrow band. We use the Green–Neumann’s function and the method of matched asymptotics [19,21].
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