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In this paper, an extension of the DDD-FFT approach presented in [1] is developed for 
heterogeneous elasticity. For such a purpose, an iterative spectral formulation in which 
convolutions are calculated in the Fourier space is developed to solve for the mechanical 
state associated with the discrete eigenstrain-based microstructural representation. With 
this, the heterogeneous DDD-FFT approach is capable of treating anisotropic and heteroge-
neous elasticity in a computationally efficient manner. In addition, a GPU implementation 
is presented to allow for further acceleration. As a first example, the approach is used 
to investigate the interaction between dislocations and second-phase particles, thereby 
demonstrating its ability to inherently incorporate image forces arising from elastic 
inhomogeneities.

© 2017 Published by Elsevier Inc.

1. Introduction

In the recent years, Discrete Dislocation Dynamics (DDD) simulation, aiming at simulating the collective motion and 
interactions of large ensembles of dislocations, has proven to be a powerful tool to study plasticity at small scales [2–5]. 
Of particular interest, DDD simulations have permitted to extract critical parameters on the collective effects of dislocations 
behavior, thereby allowing to inform and delineate higher-scale models. Successful applications for instance include the 
quantification of latent-hardening effects in cubic [6–8] and hexagonal [9,10] crystals, the delineation of physical constitutive 
models for slip-driven plasticity [11–14], the quantification of the effect of dislocation interaction with irradiation-induced 
damage on strength [15–17], the investigation of plasticity in polycrystalline materials [18,19] and the computation of 
effective activation barrier pertaining to the bypass of randomly distributed obstacles [20,21].

From a general perspective, the dislocation network in DDD simulations is usually discretized into a series of inter-
connected segments. From there, the motion and interactions of dislocation segments is determined by calculation of the 
driving force acting on the dislocation lines. Since every dislocation segment elastically interacts with all other segments in 
the simulation volume through their stress field, forces are usually calculated following the superposition method by virtue 
of which individual elastic interaction forces on pairs of segments are added [22]. In the case of isotropic homogeneous 
media, analytical expressions, based on Mura’s derivation [23], have been conveniently obtained [5,24] to quantify the in-
teraction forces between segments. These analytical expressions have allowed to significantly reduce the computational cost 
associated with the calculation of segment–segment elastic interactions. However, in the case of heterogeneous media, ad-
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ditional image forces arise from the elastic and plastic mismatch between the different phases, for which no general closed 
form solution exists. As a result, costly expressions have been obtained for calculating the stress of dislocation segments 
in elastically heterogeneous media. Furthermore, these are limited to simple geometrical configurations such as bi-layered 
materials [25,26], thereby precluding the incorporation of second-phase inclusions with complex morphologies.

To alleviate the difficulties associated with the treatment of elastic interactions between dislocations and second-phase 
inclusions, several phenomenological approaches have first been incorporated in DDD simulations. Naturally these ap-
proaches necessarily entail that approximations are made. For instance, simple line tension approximations were used to 
study particles strengthening as a function of particles spacing [27], size [28] and strength [29,30]. Incorporating more 
details, Mohles et al. successfully studied the propagation of dislocation lines within an array of coherent and incoher-
ent shearable particles using DDD simulations in which obstacles were modeled by a supplementary stress contribution 
arising from an antiphase boundary energy density [31–33]. While this supplementary contribution was added to the 
Peach–Koehler force on dislocation lines inside the particles, it was not considered outside of the particles, such that elastic 
interaction effects were effectively ignored. Similarly, in the work of Queyreau and co-workers where the Orowan by-passing 
mechanism on incoherent carbides was studied in BCC steels, no stress field was associated to the impenetrable obstacles 
[34]. More recently, DDD was used in [17] to assess the validity of particle-hardening models for a combination of voids and 
self-interstitial atom loops. In this last work, elastic interactions with voids were modeled using an atomistically-informed 
breakaway angle. Originally, in work by Monnet et al. [35] the description of the interaction between a Cr precipitate and a 
glide dislocation was parameterized from atomistic simulations. A key advantage here lies in the capability of the approach 
to include temperature effects. However, as discussed in [21,35], as one is necessarily limited to studying a few geometrical 
defect configurations via atomistic simulations, the direct parameterization into DDD as done in [17,35] for example, can 
yield effective behaviors that are not statistically representative.

Focus is placed here on the treatment of the effects of elastic heterogeneity. In this regard, a few DDD simulations have 
readily incorporated inclusions elastic interaction effects. Two different approaches – both relying on the Finite Element 
Method (FEM) – have been proposed thus far. The first method was developed in the seminal work of Shin and co-workers 
[36–38]. In their approach, the superposition method proposed by Van der Giessen and Needleman [22] was further ex-
tended to account for second-phase elastic inclusions in the matrix. By coupling the DDD simulations to a FEM code, the 
heterogeneous stress field generated by the elastic mismatch between the matrix and the precipitate was accounted for in 
the form of image forces, and the interaction of dislocations with cubical [36] and spherical [37] precipitates was investi-
gated. Using the same superposition approach, interaction forces between a straight dislocation line and spherical particles 
[39] and voids [40] were calculated. However, this method is computationally intensive as per the fine FEM meshes re-
quired. Most studies relying on the use of the superposition principle have therefore been limited to the investigation of 
static or relaxed configurations, and the approach might become intractable when performing dynamic simulations up to 
relevant levels of strain. As an alternative approach to the problem, the Discrete continuous model – hereafter DCM-FEM 
– introduced by Lemarchand and co-workers [41] and relying on an eigenstrain formalism was used to model the plastic 
deformation in metal matrix composites [42], and investigate plasticity in nickel-based single-crystal superalloys in which 
matrix channels were formed by the presence of precipitate phases [43,44]. However, although inherently accounting for 
heterogeneous elasticity, the DCM-FEM approach is practically limited to a coarse representation of precipitates (due to its 
computational cost) and cannot be employed to finely model particles.

In light of the above, current DDD approaches need to be refined and their limitations need to be addressed so as to 
(1) incorporate more details when studying interactions between second phases and dislocations, (2) extend their time and 
length scales such that refined models to be incorporated at the constitutive level can be delineated. Particularly, an accurate 
and efficient treatment of image forces arising from the elastic mismatch between the matrix and the particles needs to 
be incorporated. For this purpose, and to address the limitations of current approaches, an heterogeneous extension of the 
eigenstrain-based DDD-FFT approach recently introduced in [1] is proposed in this work. It is expected that a fine level 
of details can be incorporated in a computationally efficient manner, so as provide a numerical tool capable of accurately 
simulating the interactions between dislocations and second phases in heterogeneous anisotropic media. Furthermore, the 
current approach provides a general framework for heterogeneous elasticity, thereby paving the way towards performing 
DDD simulations in polycrystalline materials.

This paper is organized as follows. First, the implicit heterogeneous FFT-based formulation is presented in Section 2, and 
the different numerical schemes to solve for the mechanical state are detailed in Section 3. Then, details on the numerical 
implementation are given in Section 4 and a GPU-accelerated version of the FFT-based solver is proposed. In Section 5, the 
ability of the method to inherently account for the effects of elastic mismatches in heterogeneous media is demonstrated 
through static and dynamic configurations in which a dislocation is inserted into a two-phase material. Finally, the numerical 
efficiency of the approach is discussed in Section 6 and a conclusion is given in Section 7.

2. Heterogeneous FFT-based formulation for DDD

2.1. Dislocation motion

Considering an overdamped regime, the velocity �v of a dislocation line can be linearly related to the force on each 
dislocation segment �f through the mobility function M:



Download	English	Version:

https://daneshyari.com/en/article/6929216

Download	Persian	Version:

https://daneshyari.com/article/6929216

Daneshyari.com

https://daneshyari.com/en/article/6929216
https://daneshyari.com/article/6929216
https://daneshyari.com/

