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In this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations 
(DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the 
globally coupled unknowns are broken polynomials on the mesh skeleton. The key 
ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent 
contribution obtained mimicking an integration by parts formula inside each element and 
(ii) a stabilising term for which sufficient design conditions are provided. An example of 
stabilisation that satisfies the design conditions is proposed based on a local lifting of high-
order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novel DSGDs 
satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure 
convergence for a variety of elliptic and parabolic problems. Links with Hybrid High-Order, 
non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods 
are also studied. Numerical examples complete the exposition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The numerical resolution of (linear or non-linear) partial differential equations (PDEs) is nowadays ubiquitous in the en-
gineering practice. In this context, the design of convergent numerical schemes is a very active research topic. The Gradient 
Discretisation Method (GDM) is a recently introduced framework which identifies key design properties to obtain conver-
gent schemes for a variety of linear and non-linear elliptic and parabolic problems. Several models of current use in fluid 
mechanics fall into the latter categories including, e.g., porous media flows governed by Darcy’s law, phase change problems 
governed by the Stefan problem [36], as well as simplified models of the viscous terms in power-law fluids corresponding 
the Leray–Lions elliptic operators. The latter also appear in the modelling of glacier motion [38], of incompressible turbulent 
flows in porous media [26], and in airfoil design [37].

A Gradient Discretisation (GD) is defined by a finite-dimensional space encoding the discrete unknowns, as well as 
two linear operators acting on the latter, and corresponding to reconstructions of scalar functions and of their gradient. 
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For a given PDE problem, convergent GDs are characterised by four properties, which can also serve as guidelines for the 
design of new schemes: coercivity, which corresponds to a discrete Poincaré inequality; GD-consistency, which expresses 
the ability of the scalar and gradient reconstructions to approximate functions in the space where the continuous problem 
is set; limit-conformity, linking the two reconstructions through an approximate integration by parts formula; compactness, 
corresponding to a discrete counterpart of the Rellich theorem.

In the recent monograph [28], several classical discretisation methods have been interpreted in the GDM framework. 
These include: arbitrary-order conforming, nonconforming, and mixed Finite Elements (FE) on standard meshes; arbitrary-
order discontinuous Galerkin (DG) schemes in their SIPG form [1] (see, in particular, [35] on this point); various lowest-order 
Finite Volume methods on specific grids; lowest-order methods belonging to the Hybrid Mixed Mimetic family (see the 
unified presentation in [29] of the methods originally proposed in [8,27,34]) as well as nodal Mimetic Finite Differences 
(MFD) [9] on arbitrary polyhedral meshes; see also [4].

In this paper we present an important addition to the GDM framework: arbitrary-order Discontinuous Skeletal (DS) 
methods [18], characterised by globally coupled unknowns that are broken polynomials on the mesh skeleton. Specifically, 
the primary source of inspiration are the recently introduced Hybrid High-Order (HHO) methods for linear [22,20] and non-
linear [16,17] diffusion problems, and the high-order non-conforming MFD (ncMFD) method of [41]; see also [2] for an 
interpretation in the Virtual Element framework and [3] for an introduction to the latter. We also cite here the Hybridizable 
Discontinuous Galerkin methods of [14], whose link with the former methods has been studied in [13]; see also [6] for 
a unified formulation. Like DG methods, DS methods support arbitrary approximation orders on general polytopal meshes. 
DS methods are, in addition, amenable to static condensation for linear(ised) problems, which can significantly reduce the 
number of unknowns in some configurations. They also have better data locality, which can ease parallel implementations. 
Moreover, lowest-order versions are often available that can be easily fitted into traditional Finite Volume simulators. Fi-
nally, unlike DG methods, DS methods admit a Fortin operator in general meshes, a crucial property in the context of 
incompressible or quasi-incompressible problems in solid- and fluid-mechanics; see, e.g., [20,23].

Let a polynomial degree k � 0 be given. The Discontinuous Skeletal Gradient Discretisations (DSGD) studied here hinge 
on face unknowns that ensure the global coupling and that correspond to broken polynomials of total degree up to k on the 
mesh skeleton, as well as locally coupled element-based unknowns that correspond to broken polynomials of total degree 
up to l ∈ {k − 1, k, k + 1} on the mesh itself. The reconstruction of scalar functions is defined in a straightforward manner 
through the latter if l � 0, or by a suitable combination of face-based unknowns if l = −1. The gradient reconstruction, on 
the other hand, requires a more careful design. The seminal ideas to devise high-order gradient reconstructions on general 
meshes are already present, among others, in HHO methods (see, e.g., [22, Eq. (13)] and [16, Eq. (4.3)]) as well as in 
ncMFD methods (see [41, Eq. (21)]). These gradient reconstructions, however, are not suitable to define a convergent DSGD 
because they fail to satisfy the coercivity requirement. In addition, when considering non-linear problems, the codomain 
of the gradient reconstruction has to be carefully selected in order for the GD-consistency requirement to be satisfied with 
optimal scaling in the meshsize for k � 1 (this point was already partially recognised in [16]). In the context of DG methods, 
a stable discrete gradient based on a variation of the method originally proposed in [12] has been recently studied in [42].

The main novelty of this work is the introduction of a gradient reconstruction that meets all the requirements to define 
a convergent GD, and which satisfies the limit-conformity property with an error that scales optimally in the meshsize. 
This gradient reconstruction is composed of two terms: a consistent contribution closely inspired by [16, Eq. (4.3)] and a 
stabilisation term. Two design conditions are identified for the stabilisation term: (i) local stability and boundedness with 
respect to a suitable boundary seminorm and (ii) L2-orthogonality to vector-valued polynomials of degree up to k. When 
considering problems posed in a non-Hilbertian setting, an additional condition is added stipulating that the stabilisation is 
built on a piecewise polynomial space. An example of stabilisation term that meets all of the above requirement is proposed 
based on a Raviart–Thomas–Nédélec space on a submesh.

The rest of the paper is organised as follows. In Section 2 we recall the basics of the GDM and give a few examples 
of linear and non-linear problems for which GDs are convergent under the coercivity, GD-consistency, limit-conformity, 
and compactness properties discussed above. The construction of arbitrary-order DSGD is presented in Section 3, the main 
results are stated in Section 3.5, and numerical examples are collected in Section 3.7. The links with HHO, ncMFD, and 
ncVEM schemes are studied in detail in Section 4. Appendix A contains the proofs of the main results. The material is 
organised so that multiple levels of reading are possible: readers mainly interested in the numerical recipe and results can 
primarily focus on Sections 2–3; readers also interested in the relations with other polytopal methods can consult Section 4.

2. The Gradient Discretisation Method

We give here a brief presentation of the Gradient Discretisation Method (GDM) in the context of homogeneous Dirichlet 
boundary conditions, and we refer to the monograph [28] for more details and other boundary conditions.

2.1. Gradient discretisations and gradient schemes

Let � be a bounded polytopal domain in Rd , where d � 1 is the space dimension. We consider elliptic or parabolic 
problems whose weak formulation is set in W 1,p

0 (�), where p ∈ (1, +∞) denotes a Sobolev exponent which we assume 
fixed in what follows.
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