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The interaction of light with metallic nanostructures produces a collective excitation of 
electrons at the metal surface, also known as surface plasmons. These collective exci-
tations lead to resonances that enable the confinement of light in deep-subwavelength 
regions, thereby leading to large near-field enhancements. The simulation of plasmon res-
onances presents notable challenges. From the modeling perspective, the realistic behavior 
of conduction-band electrons in metallic nanostructures is not captured by Maxwell’s equa-
tions, thus requiring additional modeling. From the simulation perspective, the disparity in 
length scales stemming from the extreme field localization demands efficient and accurate 
numerical methods.
In this paper, we develop the hybridizable discontinuous Galerkin (HDG) method to solve 
Maxwell’s equations augmented with the hydrodynamic model for the conduction-band 
electrons in noble metals. This method enables the efficient simulation of plasmonic nanos-
tructures while accounting for the nonlocal interactions between electrons and the incident 
light. We introduce a novel postprocessing scheme to recover superconvergent solutions 
and demonstrate the convergence of the proposed HDG method for the simulation of a 2D 
gold nanowire and a 3D periodic annular nanogap structure. The results of the hydrody-
namic model are compared to those of a simplified local response model, showing that 
differences between them can be significant at the nanoscale.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The field of plasmonics [38,50] studies the collective excitation of conduction-band electrons in metallic nanostructures. 
These excitations, or plasmon resonances, enable the confinement of light in lengths several orders of magnitude smaller 
than the wavelength of light, leading to enormous near-field enhancements of the incident wave. The excitation of plasmons 
is magnified near the corners or sharp features of metallic nanoparticles, or within gaps formed by metallic structures 
at the nanoscale. Moreover, the extreme confinement and enhancement properties provide unparalleled means for the 
manipulation of light and its interaction with metals, at scales well beyond the diffraction limit. As a result, the field 
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of plasmonics has motivated applications for sensing [62], energy harvesting [10], near-field scanning microscopy [47], 
plasmonic waveguiding and lasing [60].

Plasmonic phenomena are governed by the propagation of electromagnetic waves. These waves propagate through di-
electric as well as metallic media, and several models have been proposed to characterize the behavior of metals. The most 
common approach to simulate plasmonic structures is to solve Maxwell’s equations in both the metal and the dielectric, and 
account for the losses in the metal through a complex permittivity in the metal given by Drude’s model [23]. The effect of 
the complex permittivity in the metal is to quickly dampen the electromagnetic wave away from the interface. This approach 
assumes the electrons in the valence band are fully detached from the ions, thus only accounting for electron–electron and 
electron–ion collisions. The Drude model has limitations due to simplifications in the description of the electron motion 
that appear at nanometer scales, where nonlocal interaction effects between electrons become predominant [25,26,67]. To 
account for these long-range interactions, the mathematical model must be enhanced. In this work, we consider the hy-
drodynamic model (HM) for noble metals, first introduced in the 1970s [24], which models the inter-electron coupling by 
including a hydrodynamic pressure term. The resulting model is solved simultaneously with Maxwell’s equations. For noble 
metal structures with nanometric and subnanometric features, the HM predicts lower field enhancements and resonance 
blue-shifts, which are in better agreement with experimental data than the results computed with the Drude model [53,64].

The ability to accurately model and simulate electromagnetic wave propagation problems for plasmonic applications 
requires capabilities that challenge traditional simulation techniques. The problems of interest involve the interaction of 
long-wavelength electromagnetic waves (μm and mm) with nanometric cavities for potential applications in sensing and 
spectroscopy. Additionally, plasmonic phenomena are characterized by the extreme confinement and tight localization of 
fields in nanometer-wide apertures, nanoparticles, nanometric sharp tips, and even atomically thick materials. As a con-
sequence, the discretizations required to attain accurate simulations need to be adaptive (to concentrate the degrees of 
freedom in the regions of interest) and anisotropic (to properly capture boundary-layer type structures that appear at the 
interface of metallic nanostructures).

The first and most widely used method for computational electromagnetics is the finite-difference time-domain (FDTD) 
algorithm [34,63], which discretizes both space and time using Yee’s scheme [65]. The main advantage of Yee’s scheme 
is its simplicity and efficiency, due to the use of staggered Cartesian grids and second-order schemes for both space and 
time. The main limitation of FDTD is their extension to complex geometries with complex features, since Cartesian grids 
can only approximate these irregular boundaries in a stair-cased manner. The FDTD method has recently been applied to 
the hydrodynamic model for the simulation of 2D nanoparticles [39].

Finite-volume time-domain (FVTD) methods have also been devised to solve Maxwell’s equations, leveraging high-order 
Godunov schemes to deal with the hyperbolicity of the system [30,40]. The use of high-order Godunov schemes on a 
single control volume is appealing, as it renders methods that are amenable to mesh refinement and adaptation, in ad-
dition to being low dissipative and dispersive. More recently, there has been an effort to fuse these high-order Godunov 
schemes from FVTD with the staggering techniques from FDTD, resulting in a new generation of FVTD methods [4,5] that 
are constraint-preserving, high-order accurate, A-stable, and that accommodate significant variations of material properties 
at media interfaces.

Finite element (FE) methods [32] are popular techniques for wave propagation problems, thanks to their ability to handle 
heterogeneous media and complex geometries with the use of unstructured grids. The class of face/edge elements intro-
duced by Nédélec [42] have been extensively used to simulate electromagnetic wave propagation, and have been shown 
to avoid the problem of spurious modes [9] by appropriately choosing the approximation spaces. A commonly used imple-
mentation of edge elements for Maxwell’s equations is the one provided by the RF Module of Comsol Multiphysics [22], 
which has been extended to include the hydrodynamic model [15,64]. Additionally, a frequency-domain implementation 
of the hydrodynamic model based on edge elements has been applied to the numerical simulation of 2D grooves and 
nanowires [28].

An attractive alternative to edge elements is the class of discontinuous Galerkin (DG) methods [6,21]. These meth-
ods approximate each component of the vector solution independently using standard finite element spaces within each 
discretization element. The solution across elements is discontinuous, and continuity of the flux is enforced weakly across 
element interfaces. The DG method with explicit time integration was applied to solve the time-domain Maxwell’s equations 
[27], and has been further developed to simulate wave propagation phenomena through metamaterials at the nanoscale [11], 
as well as for dispersive media [31,35,37] and more recently for 2D dimers using the hydrodynamic model [59]. DG methods 
face disadvantages when used for practical 3D applications in the frequency domain or in the time domain with implicit 
time integration, due to the computational burden that arises from nodal duplication at the interfaces. This shortcoming 
motivated the development of the hybridizable discontinuous Galerkin (HDG) method, first introduced in [18] for elliptic 
problems, subsequently analyzed in [17,19], and later extended to a wide variety of partial differential equations (PDEs) [43,
44]. More specifically, the HDG has proven very effective for acoustics and elastodynamics [45,58] as well as time-harmonic 
Maxwell’s equations in two dimensions [46] and three dimensions [36]. An additional attractive feature of the HDG method 
is that, unlike other DG methods, it has optimal convergence rates for both the solution and the flux. As a consequence, its 
flux superconvergence properties can be exploited to devise a local postprocess that increases the convergence rate of the 
approximate solution by one order.

The main contribution of this paper is a high-order numerical scheme, the HDG method, to simulate the interaction of 
light with metallic nanostructures by solving the frequency-domain Maxwell’s equations coupled with the hydrodynamic 
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