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We solve the wave equation with variable wave speed on nonconforming domains with 
fourth order accuracy in both space and time. This is accomplished using an implicit finite 
difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) 
equation at each time step with fourth order spatial accuracy by the method of difference 
potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured 
grids to efficiently solve problems on nonconforming domains while maintaining the 
design convergence rate of the underlying FD scheme. Asymptotically, the computational 
complexity of high-order MDP scales the same as that for FD.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider an initial boundary value problem for the wave (d’Alembert) equation:

utt = c2�u + F ,
−→x ∈ � (1a)
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) = φ0
(−→x )

(1b)
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(1c)

�(u)|� = ψ(t) (1d)

where � = ∂� is the boundary, the wave speed c is a variable function of the spatial coordinates (assumed smooth in 
the current work, although this limitation can be lifted as explained in Section 5), and F is an inhomogeneous term. The 
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boundary condition (1d) in this work is taken to be either Dirichlet (� = 1) or Neumann (� = ∂
∂n ). In our earlier work [1,

2] that discussed the Helmholtz equation (i.e., the time-harmonic wave equation), we have considered a variety of more 
general boundary conditions as well.

Equation (1a) is an established model for a broad range of problems in acoustics and electromagnetism. The key feature 
of all these problems is their linearity. The numerical methods that we are developing hereafter are not designed for solving 
the nonlinear problems. We rather consider our main challenge as to compute the solution over large and generally shaped 
regions with high fidelity and robustness.

Finite difference (FD) methods are known to lead to inexpensive and efficient algorithms for computing smooth solutions 
on regular domains/grids. Their primary disadvantage is in dealing with more complicated geometries and solutions with 
low regularity. The finite element method (FEM) and its extensions, as well as the discontinuous Galerkin method (DG), 
may help alleviate these two constraints pertinent to FD. Yet in practical problems of wave propagation, especially in 3D, 
both FD and FEM have serious limitations because of their relatively high “points-per-wavelength” requirement, as well as 
numerical pollution (the dispersion error), see [3,4] and [5, Section 4.6.1]. The numerical phase velocity of the wave in these 
methods depends on the wavenumber. Therefore, a propagating packet of waves with different frequencies gets distorted in 
the simulation. Furthermore, the numerical error strongly depends on the frequency [6,5].

This drawback can be (partially) overcome by high-order FD schemes. They, however, usually need a wider stencil, which 
complicates the boundary conditions. A class of schemes aimed at reducing the phase error are the dispersion relation 
preserving schemes [7,8]. Yet they need an even wider stencil than conventional schemes of the same order of accuracy.

There is also a special type of high-order schemes that do not require a wider stencil. These schemes rely on a targeted 
approximation of the class of solutions rather than of a much broader class of generic sufficiently smooth functions. The 
equation-based compact schemes that we have developed in [9–11] for the Helmholtz equation are in this category; other 
similar methods include [12–15]. A recent extension of compact equation-based schemes to the time domain is given in 
[16]. Such schemes reduce pollution while keeping the treatment of the boundary conditions simple. However, geometry 
still remains a hurdle.

In FEM, on the other hand, a high-order accurate approximation can be built for arbitrary boundaries with the help 
of isoparametric elements [17]. These methods require a grid generation which can be nontrivial for complex geometries 
and interfaces. In DG, discontinuous enrichment methods, and generalized FEM, high-order accuracy also requires additional 
degrees of freedom. The disadvantage of these methods for the linear problems with smooth solutions is their substantial 
redundancy, which entails additional computational costs.

A group of methods known to provide a very considerable flexibility from the standpoint of geometry are the boundary 
element methods (BEM). They typically apply to steady-state or time-harmonic problems (elliptic PDEs). In these methods, 
linear boundary value problems are reduced to boundary integral equations (BIE) with respect to equivalent boundary 
sources. BEM impose practically no limitations on the shape of the boundary and automatically account for the correct 
far field behavior of the solution. However, these methods rely on the explicit knowledge of the fundamental solution 
(and so they are not easily compatible with variable propagation speed), and the treatment of the boundary conditions 
requires care in choosing the boundary sources so as to maintain the equivalence of the reduction and well-posedness of 
the resulting boundary representation. In doing so, the cases that involve resonances of the complementary domain require 
special attention, see, e.g., [18].

Standard BEM cannot be used directly for unsteady problems of wave propagation (hyperbolic PDEs). Their time-
dependent applications are rather limited to combined problems with a clearly identifiable elliptic component, such as 
slow speed flows of viscous fluid [19,20] or water waves [21].

A special class of BIEs called the retarded potential boundary integral equations (RPBIE), see [22,23], provide a venue 
toward extending the BEM from elliptic to hyperbolic PDEs. However, the corresponding time domain numerical methods 
[24–27] are not nearly as popular as their frequency domain counterparts. One difficulty is that many time domain dis-
cretizations of RPBIEs appear prone to instabilities, even if the well-posedness of the RPBIE per se can be guaranteed in 
the first place (some aspects of stability have recently been studied in [28]). For the most part, however, the reason is that 
as the time elapses the boundary extends and the computation of convolutions involved in RPBIEs that typically relies on 
Laplace transform methods [29,30] becomes progressively more expensive. In that regard, we also mention work [31,32]
that uses RPBIEs and convolution quadratures [29,30] for the development and analysis of far-field boundary conditions.

In our earlier work on the Helmholtz equation [33,1,34,35,2], we have employed the method of difference potentials 
(MDP) developed by Ryaben’kii [36–39]. The MDP can be viewed as a discrete analog of Calderon’s potentials and Calderon’s 
boundary equations with projections in functional analysis [40,41]. Its capacity of handling the boundaries of general shape 
is comparable to that of BIEs. Yet the MDP does not require fundamental solutions and automatically guarantees the equiv-
alence of the reduced boundary problem and the original one. It uses discretizations on regular structured grids and can 
maintain high-order accuracy for non-conforming boundaries. Difference potentials for the Helmholtz equation [33,1,34,35,
2] were built using compact equation-based schemes [9–11] that enable high-order accuracy while avoiding the extensive 
redundancy inherent in high-order FEM and DG methods.

In the current paper, we extend the previously developed MDP-based approach for time-harmonic waves to the genuinely 
time-dependent formulation (1). Our goal is to achieve the same geometric flexibility and high-oder accuracy as we have 
obtained for the Helmholtz equation [33,1,34]. Fundamentally, there may be two ways of pursuing this goal. One can build a 
full-fledged MDP algorithm in 3+1 dimensional space-time. In doing so, like in the case of RPBIEs, computing the operators 
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