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In this paper, we are interested in the resolution of the time-dependent problem of 
particle transport in a medium whose composition evolves with time due to interactions. 
As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. 
A common resolution strategy consists in a splitting between the MC/transport phase and 
the time discretization scheme/medium evolution phase. After going over and illustrating 
the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar 
Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the 
solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new 
solver is essentially based on a Monte Carlo scheme with time dependent cross sections 
implying the on-the-fly resolution of a reduced model for each MC particle describing the 
time evolution of the matter along their flight path.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose 
composition evolves with time due to interactions (reactions) with particles. We suppose transport to be driven by the linear 
Boltzmann equation (1a) for particles having position x ∈ D ⊂ R

3, velocity v ∈ R
+ , direction ω ∈ [0, 2π ] × [0, π ], at time 

t ∈ [0, T ] ⊂ R
+ and where the quantity n(x, t, v, ω) is the density of presence of the particles at (x, t, v, ω). We assume 

the time variation of the medium composition (vector N ) can be accurately modeled by Bateman equations (1b) (see [10]) 
where r(x, t, v) = (r1(x, t, v), ..., rM(x, t, v))t is the vector of reaction rates (depending on particle velocity/energy). In this 
paper, we consider the vector of reaction rates is stiff. By stiff, we mean the characteristic time for the reactions is much 
smaller than the transport one, at least for some medium components, in some subsets of the computational domain D. As 
a result, problem (1) is stiff, non-linear and strongly coupled:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tn(x, t, v,ω) + vω∇xn(x, t, v,ω) + �t(N(x, t), v)vn(x, t, v,ω)

=
∫∫

�c(N(x, t),ω′,ω, v ′, v)v ′n(x, t, v ′,ω′)dω′ dv ′, (a)

∂t N(x, t) =
∫∫

r(N(x, t), v)vn(x, t, v,ω)dω dv. (b)

(1)
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The interaction of particles with the medium is described through total interaction probability �t(x, t, v) and a collision 
term �c(x, t, ω, ω′, v, v ′). Macroscopic interaction properties depend on both microscopic ones designated by (σα,m)α∈{t,c}
and the medium composition vector N(x, t) = (N1(x, t), ..., NM(x, t))t :

�t(N(x, t), v) =
M∑

m=1

σt,m(v)Nm(x, t), �c(N(x, t),ω′,ω, v ′, v) =
M∑

m=1

σc,m(ω′,ω, v ′, v)Nm(x, t). (2)

Under this general form, model (1) can be relevant in many fields of applications. The Bateman counterpart (1b) may 
be considered as a particular case of the Lotka–Volterra system (see [24]) in which we only kept the strong coupling 
term. Amongst the applications (non exhaustive list), one can quote biology [24] with population dynamics, or physics with 
burn-up computations in neutronics [5,13,14,8]. In the following, we refer to publications dealing with burn-up applications 
as numerical studies have mainly been carried out in this context [5,13,14,8]. The particles are then neutrons, the medium is 
composed of nuclides and the description of the microscopic collision term (σc,m)m∈{1,...,M} is usually explicitly decomposed 
into a scattering cross-section (σs,m)m∈{1,...,M} and a fission cross-section (multiplicative reactions) (σ f ,m)m∈{1,...,M} . The 
macroscopic collision term is then:

�c(N(x, t),ω,ω′, v, v ′) =
M∑

m=1

σs,m(ω,ω′, v, v ′)Nm(x, t) + ν f ,m(v)σ f ,m(ω,ω′, v, v ′)Nm(x, t), (3)

where ν f ,m(v) designates the fission multiplicity for material m and velocity v . Note that in the following, we will adopt 
the terminology commonly used in neutronics [3], except we gather scattering and fission under a unique collision term 
�c for the sake of conciseness. Of course, the numerical methodology we develop in this paper is very general and can be 
broadened to a larger scope.

The most common resolution strategy consists in a splitting between the MC/transport phase and the time discretization 
scheme/Bateman phase. In particular, it implies freezing the nuclide concentrations during the transport phase. In section 2, 
we will examine several choices for the time discretization scheme.1 To do so, we simplify system (1) (monokinetic trans-
port and scalar Bateman equations) and build an analytical solution for the strongly coupled system under several general 
hypothesis. To our knowledge, such analytical solution has never been stated. It allows for a complete quantitative study of 
the numerical schemes at use in this paper and presents also an advantage in term of verification (as in Verification and 
Validation, V&V [1]). This study will help us conclude that whatever the time discretization scheme, the splitting strategy 
implies limitations, especially concerning the choice of the time step as soon as stiff regimes are at stakes.

In section 3 on page 217, we present a new MC solver aiming at addressing the aforementioned limitations. We rely on 
two ingredients: a Monte-Carlo scheme with time-dependent cross-sections (to alleviate the classical hypothesis of constant 
nuclide concentrations) and a way to approach nuclides concentration evolution during the Monte Carlo phase solving 
a reduced model which preserves the stiff regime. Combining these two elements, we build a new Unsplit Monte-Carlo 
(UMC) solver. The mathematical study of transport processes with time-dependent parameters (first ingredient mentioned
above) is not new (see [20]), but is scarcely used and have never been applied in order to tackle coupled systems in stiff 
regimes to our knowledge.

Section 4 on page 227 is dedicated to the application of the general methodology of section 3 and benchmarks. The test 
problems are presented with increasing complexity. We first have a monokinetic-mononuclide configuration (section 4.1), 
then monokinetic-multinuclide (in section 4.2) and at last the most general case (section 4.3). With these three configura-
tions we were able to highlight the different possibilities handled by the methodology relative to the type of reduced model 
(analytical or system of ODEs). Each test problem goes with performance considerations.

As a conclusion, in section 5 on page 233, we will briefly remind the main aspects of the paper, present future works, the 
expectations for our UMC solver in term of physical applications and concisely hint at some High Performance Computing 
(HPC) considerations.

Concerning the classical numerical methods used in the different phases (MC schemes for transport equation and time 
discretization schemes for the Bateman phase), we choose to detail their specifications in the Appendix A. Appendices also 
introduce some implementation details important for the sake of comparison and reproduction of the results presented in 
this paper.

2. Application and analysis of classical solvers on a simplified system

In this section, our aim is to pedagogically put forward the limitations of solvers involving a splitting between the 
transport equation (solved using MC method) and the Bateman system when the latter is stiff. To do so, we first make some 
simplifications allowing the construction of an analytical solution for a still strongly coupled system. We then perform some 
in-depth convergence studies with the common numerical solvers of the literature. Obviously, we do not test every existing 
solvers but only the ones we consider relevant to serve our purpose. For complementary studies, we refer to [5,13,8,7] with 

1 In a burn-up context, we refer to [5,13,8,7] and the reference therein for complete descriptions of the commonly used schemes.
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