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In this paper, we develop a new tensor-product based preconditioner for discontinuous 
Galerkin methods with polynomial degrees higher than those typically employed. This 
preconditioner uses an automatic, purely algebraic method to approximate the exact block 
Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. 
Traditional matrix-based preconditioners require O(p2d) storage and O(p3d) computational 
work, where p is the degree of basis polynomials used, and d is the spatial dimension. 
Our SVD-based tensor-product preconditioner requires O(pd+1) storage, O(pd+1) work in 
two spatial dimensions, and O(pd+2) work in three spatial dimensions. Combined with 
a matrix-free Newton–Krylov solver, these preconditioners allow for the solution of DG 
systems in linear time in p per degree of freedom in 2D, and reduce the computational 
complexity from O(p9) to O(p5) in 3D. Numerical results are shown in 2D and 3D for the 
advection, Euler, and Navier–Stokes equations, using polynomials of degree up to p = 30. 
For many test cases, the preconditioner results in similar iteration counts when compared 
with the exact block Jacobi preconditioner, and performance is significantly improved for 
high polynomial degrees p.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The discontinuous Galerkin (DG) method, introduced in [29] by Reed and Hill for the neutron transport equation, is a 
finite element method using discontinuous basis functions. In the 1990s, the DG method was extended to nonlinear systems 
of conservation laws by Cockburn and Shu [8]. The method has many attractive features, including arbitrarily high formal 
order of accuracy, and the ability to use general, unstructured meshes with complex geometry. In particular, the promise 
of a high-order method for fluid flow problems has spurred recent interest in the DG method [26]. Higher-order methods 
promise highly-accurate solutions for less computational cost than traditional low-order methods. Additionally, high-order 
methods are more computationally intensive per degree of freedom than corresponding low-order methods, resulting in a 
higher computation-to-communication ratio, and thus rendering these method more amenable to parallelization [3].

High-order accuracy is achieved with the DG method by using a high-degree local polynomial basis on each element 
in the mesh. There are several challenges that can prevent the use of very high-degree polynomials as basis functions. 
The number of degrees of freedom per element scales as O(pd), where p is the degree of polynomial approximation, 
and d is the spatial dimension, resulting in very computationally expensive methods. Using tensor-product evaluations and 
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sum factorizations [25], it is possible to reduce the computational cost of these methods, however, the spectrum of the 
semi-discrete operator grows at a rate bounded above by (p + 1)(p + 2)/h, and well approximated by (p + 1)1.78/h where 
p is the degree of polynomial approximation, and h is the element size [16,38]. As a result, when using explicit time 
integration schemes, the time step must satisfy a restrictive stability condition given by (approximately) �t ≤ Ch/(p + 1)1.78

[20]. On the other hand, the DG method couples all the degrees of freedom within each element, so that implicit time 
integration methods result in block-structured systems of equations, with blocks of size pd × pd . Strategies for solving these 
large linear systems include Newton–Krylov iterative solvers coupled with an appropriate preconditioner [28]. Examples of 
preconditioners considered include block Jacobi and Gauss–Seidel [24], incomplete LU factorizations (LU) [27], and domain 
decomposition techniques [11]. Multigrid and multi-level solvers have also been considered [15,18,4].

Many of the above preconditioners require the inversion of large the pd × pd blocks corresponding to each element. 
Using dense linear algebra, this requires O(p3d)operations, which quickly becomes intractable. One approach to reduce the 
computational complexity of implicit methods is to combine Kronecker and sum-factorization techniques with a matrix-free 
approach. Matrix-free approaches for the DG method have been considered in e.g. [9] and [19]. Past work on efficiently 
preconditioning these systems includes the use of alternating-direction-implicit (ADI) and fast diagonalization method 
(FDM) preconditioners [12]. Kronecker-product approaches have been studied in the context of spectral methods [31], 
and applications to the Navier–Stokes equations were considered in [13]. In this work, we describe a new approximate 
Kronecker-product preconditioner that, when combined with a matrix-free tensor product evaluation approach, allows for 
efficient solution of the linear systems that arise from implicit time discretizations for high polynomial degree DG methods. 
This preconditioner requires tensor-product bases on quadrilateral or hexahedral elements. Then, the pd × pd blocks that 
arise in these systems can be well-approximated by certain Kronecker products of one dimensional p × p matrices. Using 
a shuffled singular value decomposition introduced by Van Loan in [34], it is possible to compute decompositions into ten-
sor products of one-dimensional terms that are optimal in the Frobenius norm. Using these techniques, it is possible to 
construct an approximate tensor-product version of the standard block Jacobi preconditioner, that avoids inverting, or even 
storing, the large diagonal blocks of the Jacobian matrix.

In Section 2, we give a very brief description of the discontinuous Galerkin method for a general system of hyperbolic 
conservation laws. In Section 3, we outline the sum-factorization approach, and describe equivalent Kronecker-product rep-
resentations. Then, in Section 4 we develop the approximate Kronecker-product preconditioners, and provide a new set of 
algorithms that can be used to efficiently compute and apply these preconditioners. Finally, in Section 5, we apply these 
preconditioners to several test problems, including the scalar advection equation, compressible Navier–Stokes equations, and 
the Euler equations of gas dynamics, in two and three spatial dimensions.

2. Equations and spatial discretization

We give a brief overview of the discontinuous Galerkin method for solving a hyperbolic conservation law of the form

∂t u + ∇ · F (u) = 0. (1)

In order to formulate the method, we first discretize the spatial domain � by means of a triangulation Th = {K j : ⋃ j K j = �}. 
Common choices for the elements K j of the triangulation are simplex and block elements. Given a triangulation Th , we now 
introduce the finite element space Vh , given by

Vh = {
vh : vh|K j ∈ V (K j)

}
, (2)

where V (K j) is a function space local to the element K j . Such functions admit discontinuities along the element interfaces 
∂ K j . In the case of simplex elements, the local function space V (K j) is taken to be the space of multivariate polynomials of 
at most degree p, P p(K j). Of particular interest to this paper are the block elements, which in Rd are defined as the image 
of the d-fold Cartesian product of the interval [0, 1] under an isoparametric polynomial transformation map.

By looking for a solution uh ∈ Vh , multiplying by a test function vh ∈ Vh , and integrating by parts over each element, we 
derive the weak formulation of (1),∫

K j

(∂t uh)vh dx −
∫
K j

F (uh) · ∇vh dx +
∫

∂ K j

F̂ (u−
h , u+

h ,n)vh dA = 0, for all K j ∈ Th , (3)

where u−
h and u+

h are the interior and exterior traces (respectively) of uh on ∂ K j , and F̂ is an appropriately defined nu-
merical flux function. The integrals in (3) are approximated using an appropriate quadrature rule, and the resulting system of 
ordinary differential equations is termed the semi-discrete system. In this work, we use quadrature rules that are given by 
tensor products of one-dimensional quadratures. Typically, using the method of lines, the time derivative (3) is discretized 
by means of one of many standard (implicit or explicit) methods for solving ordinary differential equations.

3. The sum-factorization approach

In order to numerically represent the solution, we expand the function uh in terms of basis functions local to each 
element. In Rd , the number of degrees of freedom n per element thus scales as O(pd). In this work, we will make the 
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