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We present a randomized iterative method for approximating unknown function
sequentially on arbitrary point set. The method is based on a recently developed sequential 
approximation (SA) method, which approximates a target function using one data point at 
each step and avoids matrix operations. The focus of this paper is on data sets with highly 
irregular distribution of the points. We present a nearest neighbor replacement (NNR) 
algorithm, which allows one to sample the irregular data sets in a near optimal manner. 
We provide mathematical justification and error estimates for the NNR algorithm. Extensive 
numerical examples are also presented to demonstrate that the NNR algorithm can deliver 
satisfactory convergence for the SA method on data sets with high irregularity in their 
point distributions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Approximating an unknown function using its samples is a standard task in approximation theory and numerical analysis. 
It has been extensively studied, see, for example, a few earlier books [3,4,12,13]. The common approaches include methods 
such as least squares, interpolation, compressed sensing, etc. Typically, these methods require operation and inversion of a 
certain model matrix of size M × N , where M is the number of samples and N is the number of basis functions used in the 
approximation. For problems with very large number of samples, implementation of these methods can become challenging, 
as the size of the model matrix becomes exceedingly large.

In this paper, we focus on a different approach – sequential approximation (SA), based on the recent work of [15,19]. 
The method seeks to construct an approximation iteratively using one data point at each step. By doing so, it avoids the 
use of matrices and only requires vector operations. Therefore, the implementation of the method is straightforward. It was 
shown that the method converges, in expectation, when one uses randomly selected samples in the approximation domain. 
The theoretical convergence, particularly the optimal convergence using certain optimal sampling measure, was established 
in [15] for noiseless data and in [14] for noisy data. The method is particularly suitable for exceedingly large data sets, as it 
does not need to store the entire data set. In [19], the method was used in conjunction with tensorized Gauss quadrature 
points for multivariate function approximation, which is not feasible in high dimensions by other methods. It should also 
be remarked that the SA method was motivated by the randomized Kaczmarz (RK) method ([16]), which iteratively solves 
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overdetermined linear system of equations one random row at a step. In term of linear systems of equations, RK method 
has been studied and extended in a series of work, cf., [10,20,2,5,9,1,17].

The focus of this paper is to study SA method for function approximation subject to arbitrarily given data sets. In [15,
19,14], the convergence of SA method was established when data samples are collected randomly and an optimal sampling 
measure to ensure faster convergence was derived. In practice, however, sample data are often collected in a vastly different 
manner and do not follow certain desirable patterns. Practical constraints in experimentation and/or measurements often 
prevent the samples from being collected at “mathematically optimal” locations. Moreover, samples can be highly clustered 
and distribute irregularly in the domain. Function approximation using such irregularly distributed samples can be challeng-
ing. In this paper we develop a variation of SA method to cope with irregularly distributed data sets. The method starts with 
random sampling using a probability measure, preferably the optimal measure developed in [15]. The resulting samples in 
general do not coincide with the existing points in the given data set. We then conduct a nearest neighbor search and re-
place the randomly generated sample by its nearest neighbor in the given data set. The SA method is then performed using 
the selected data sample. The procedure, termed “nearest neighbor replacement” (NNR) algorithm, effectively creates a dis-
crete probability measure to sample the given data set. We demonstrate that this discrete measure is a weak approximation 
to the continuous measure from which samples are drawn in the first place. Theoretical analysis is provided to quantify the 
error in this weak approximation of the measure, and the convergence of the NNR-SA algorithm is established. Although 
the nearest neighbor search adds computational cost to the SA method, its implementation requires only vector operations 
and a simple linear search. It significantly improves the convergence of SA methods, when the samples are highly clustered. 
The NNR-SA algorithm is thus suitable for highly irregularly distributed data sets. Several numerical examples are provided 
to demonstrate its effectiveness.

2. Preliminaries

We seek to approximate an unknown target function f : D → R, where D ⊆ R
d , d ≥ 1, and x = (x1, . . . , xd) the coordi-

nate. We shall equip the domain D with a measure ω, which is assumed to be absolutely continuous and (without loss of 
generality) satisfy 

∫
D dω = 1. We then consider the standard Hilbert space with inner product

(g,h)L2
ω

:=
∫
D

g(x)h(x)dω(x),

and the corresponding induced norm ‖ · ‖L2
ω

. Throughout this paper we will assume f ∈ L2
ω(D).

2.1. Setup

We shall approximate the target function f via its samples. Let

� := {xi}M
i=1 ⊂ D (2.1)

be a set of sample points. Throughout this paper we shall focus on the case of large data sets, i.e., M 	 1. We also assume 
the sample points are arbitrarily distributed, in the sense that the configuration of the points in the set � does not follow 
any predetermined pattern such as tensor structure, quadrature/cubature rules, certain probability distributions, etc. Let

f i = f (xi) + εi, i = 1, · · · , M, (2.2)

be sample data, where {εi}M
i=1 are independent random noises with zero mean value and bounded variance. The case of 

εi ≡ 0 corresponds to noiseless case.
We seek an approximation p ≈ f from a finite dimensional linear subspace V , i.e., p ∈ V , where V ⊂ L2

ω(D) with 
dim V = N ≥ 1. Let {ψ j(x)}N

j=1 be a basis of V . Without loss of generality, we assume the basis functions are orthogonal 
with respect to the measure ω, i.e.,(

ψi,ψ j
)

L2
ω

= δi j, 1 ≤ i, j ≤ N. (2.3)

(Note that non-orthogonal basis can always be orthogonalized by, for example, the Gram–Schmidt procedure.) The approxi-
mation can then be expressed as

p(x) =
N∑

j=1

c jψ j(x). (2.4)

Upon adopting the following vector notations

�(x) = (
ψ1(x), . . . ,ψN(x)

)

, c = (c1, . . . , cN)
, (2.5)

we write
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