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We present a robust sharp-interface immersed boundary method for numerically studying 
high speed flows of compressible and viscous fluids interacting with arbitrarily shaped 
either stationary or moving rigid solids. The Navier–Stokes equations are discretized on 
a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid 
fluxes and conservative high-order central-difference schemes for the viscous components. 
Discontinuities such as those introduced by shock waves and contact surfaces are captured 
by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells 
in the vicinity of the fluid–solid interface are introduced to satisfy boundary conditions 
on the interface. Values of variables in the ghost cells are found by using a constrained 
moving least squares method (CMLS) that eliminates numerical instabilities encountered 
in the conventional MLS formulation. The solution of the fluid flow and the solid motion 
equations is advanced in time by using the third-order Runge–Kutta and the implicit 
Newmark integration schemes, respectively. The performance of the proposed method has 
been assessed by computing results for the following four problems: shock-boundary layer 
interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube 
and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by 
shock waves, and comparing computed results with those available in the literature.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The interactions of high-speed compressible viscous flows with irregularly shaped objects are commonly encountered 
in aerospace applications. These interactions may encompass various flow phenomena including shock wave reflection and 
diffraction, as well as shock–shock, shock-vortex and shock-boundary layer interactions. In addition to the challenge of 
representing various discontinuities in a high-speed flow, simulating an irregular-shaped solid moving in a compressible 
viscous flow is very challenging. Numerical methods used to solve such problems employ either a finite-difference or a 
finite volume grid to represent the computational domain and a variety of algorithmic approaches to satisfy continuity 
conditions at the fluid–solid interface.

An ideal numerical method for simulating high-speed flows should be accurate and free from numerical dissipation in 
smooth parts of the flow, and must robustly capture flow discontinuities without significant Gibbs ringing that can lead 
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to nonlinear instability [1]. The shock-capturing upwind-biased schemes commonly employed to suppress the Gibbs oscil-
lations include, but are not limited to, the total variation diminishing (TVD) methods with flux or slope limiters [2], the 
monotonicity-preserving (MP) methods [3–5], the essentially non-oscillatory (ENO) [6,7] methods and the weighted essen-
tially non-oscillatory (WENO) [8,9] methods. The TVD methods can be easily implemented but they reduce to first-order 
accuracy at the local extrema of solutions and can be numerically very diffusive for computing solutions involving oscillatory 
waves. The MP method proposed by Suresh and Huynh [3] generalizes the TVD schemes and shows very good performance 
in preserving both the accuracy in smooth flow regions as well as the monotonicity near discontinuous flow regions [4,5]. 
The ENO schemes determine the numerical flux from a high-order reconstruction over an adaptive stencil that is selected to 
minimize interpolation across discontinuities and hence diminish Gibbs oscillations. However, the ENO schemes are found to 
be less stable for computing steady flows than the TVD techniques since the TVD condition is not rigorously satisfied in the 
ENO schemes [10,11]. In a WENO scheme, a high-order numerical flux is constructed by using a convex linear combination 
of lower-order polynomial reconstructions over a set of staggered stencils, with weights selected to achieve the maximum 
formal order of accuracy in smooth regions, and nearly zero weight assigned to reconstructions on stencils crossed by dis-
continuities. The WENO schemes improve robustness, convergence and efficiency of the ENO schemes, and tend to have 
uniform higher-order accuracy in smooth regions and maintain the essentially non-oscillatory properties near shock waves. 
Several WENO methods including the third-, the fifth- and the higher-order have been developed [12,13]. For high-speed 
flows, the WENO schemes seem to have superceded other shock-capturing methods in the last decade and have proved to 
be extremely accurate and robust in the presence of strong shock waves and complex shock interactions [1].

For numerically simulating flows interacting with complex-shaped solids, the correct enforcement of boundary conditions 
on the fluid–solid interface is important for the accuracy and stability of the numerical method. The body-fitted grid meth-
ods [14–16] have been commonly employed for such problems that transform governing equations and boundary conditions 
of the fluid into body-fitted coordinate systems with either a structured or an unstructured grid thereby easily enforcing 
boundary conditions on the fluid–solid interface for stationary solids with smooth boundaries. However, the mesh genera-
tion for a complex-shaped solid is cumbersome. Moreover, for flows involving moving solids, transient re-meshing strategies 
are required which further increases the computational and algorithmic complexity of the body-fitted grid methods. A dif-
ferent approach that retains most of the favorable properties of structured grids but also provides a high level of flexibility 
in handling irregular-shaped geometry is the immersed boundary method [17,18]. In this method, the requirement of the 
grid conforming to a solid boundary is relaxed by using a non-conforming grid, and the effect of a complex object on the 
flow is considered through proper treatment of the solution variables at the grid cells in the vicinity of the body. This 
method can tackle flows with complex stationary or moving boundaries with relative ease. However, as the solid boundary 
can arbitrarily cut through the underlying mesh, one needs to treat the boundary in a way that does not adversely impact 
the accuracy and conservation property of the underlying solver.

Based on the representation of the fluid–solid interface, the immersed boundary methods may be classified as either 
diffused or sharp interface [18]. In diffused interface methods, an immersed boundary is smeared by distributing singular 
forces to the surrounding background grid nodes using discrete delta functions [19] or mask functions for penalty meth-
ods [20]. The diffused interface methods can be formulated independent of the spatial discretization, and therefore can be 
easily implemented in an existing fluid solver. However, they produce a “diffused” boundary, and the boundary conditions 
on an immersed surface are not precisely satisfied at its actual location but within a localized region around the bound-
ary. The so called “sharp interface” methods include, to name a few, the ghost-cell [21–23], the cut-cell [24,25] and the 
immersed interface methods [26], which strongly depend upon the spatial discretization of the immersed boundary and 
in which a solid boundary is precisely tracked. The sharp interface methods are preferred because of accuracy, particularly 
for flows with thin boundary layers. The ghost-cell methods are considered to be less accurate than the cut-cell methods 
at the same resolution of an underlying Cartesian grid due to its inherent implicit representation of the solid boundary. 
However, they can be easily implemented and are computationally efficient as it is not necessary to modify flux calculations 
of an existing Cartesian-grid solver. Moreover, the complicated cell reshaping procedure required in a cut-cell method is not 
needed in a ghost-cell method.

A critical issue in a ghost-cell immersed boundary method is the accuracy of the reconstruction solution at nodes near 
the immersed interface via appropriate interpolation schemes using known values on the solid surface and the informa-
tion from the interior of the flow. The accuracy of the interpolation/extrapolation is an important aspect of an immersed 
boundary method since it directly influences the number of computational cells required to resolve a flow field as eco-
nomically as possible. A classical scheme computing the ghost-cell values is the bilinear interpolation for two-dimensional 
(2-D) problems [21] (trilinear interpolation for 3-D problems [22]). However, when the interpolation point is very close 
to the boundary, all neighboring points required for the interpolation may not be in the fluid domain. In such cases, the 
information at the desired point can be found either by using a reduced-order interpolation scheme or by employing 
body-intercepting points for the interpolation. The inverse distance weighting interpolation method has also been used 
to construct the fluid values in sharp interface immersed boundary methods [21,27,28]. This scheme is stable for recon-
structing variables that smoothly vary without exhibiting large maximum values. Toja-Silva [29] developed an immersed 
boundary method based on radial basis functions for the interpolation of the near-boundary cells that had convergence rate 
of one. Note that the accuracy of the above-mentioned methods is at most second order. Interpolations based on higher-
order polynomials are expected to be more accurate, but they often lead to numerical instabilities and the determination 
of appropriate stencils for such interpolations is very difficult. Seo and Mittal [30] applied a moving least-squares (MLS) 
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