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This paper presents the implementation and validation of a remeshed Vortex Particle-
Mesh (VPM) method capable of simulating complex compressible and viscous flows. 
It is supplemented with a radiation boundary condition in order for the method to 
accommodate the radiating quantities of the flow. The efficiency of the methodology relies 
on the use of an underlying grid; it allows the use of a FFT-based Poisson solver to calculate 
the velocity field, and the use of high-order isotropic finite differences to evaluate the non-
advective terms in the Lagrangian form of the conservation equations. The Möhring analogy 
is then also used to further obtain the far-field sound produced by two co-rotating Gaussian 
vortices. It is demonstrated that the method is in excellent quantitative agreement with 
reference results that were obtained using a high-order Eulerian method and using a high-
order remeshed Vortex Particle (VP) method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Vortex particle (VP) methods are known to be well suited for the study of convection dominated incompressible flows 
in an unbounded domain. This capability is attributable to different interesting properties either of the mathematical for-
mulation itself or of the efficient implementations that follow from it. First, VP methods are Lagrangian methods solving 
the Navier–Stokes equations in vorticity–velocity formulation [1,2]. Particles are used to discretize the vorticity field while 
being advected by the local velocity field. This Lagrangian treatment of the advection, combined with high-order remeshing 
schemes – that are required to compensate for the Lagrangian distortion of the particles – has two expected advantages: 
relaxed stability constraints and a reduced dispersion error. Besides, because of their formulation, VP methods are inher-
ently capable of taking into account unbounded boundary conditions. They also greatly benefit from the compactness of 
the vorticity field. Vortex Particle-Mesh (VPM) methods, also referred to as Vortex-in-Cell (VIC) methods, derive from it. 
The Vortex-in-Cell method was first introduced by Christiansen [3] and additional developments were made by others (e.g. 
[1,2] as well as references therein and [4–6]). While keeping the advantages of VP methods, VPM methods also exploit the 
advantages of an underlying grid: it allows the use of efficient grid-based Poisson solvers (that are needed to calculate the 
velocity field) and the use of high-order finite difference operators to evaluate the non-advective terms. The high quality 
of the remeshed VPM methodology was demonstrated against the results obtained using a pseudo-spectral solver in [7]. 
The advantages of VP and VPM methods were exploited in numerous studies, both in 2-D and in 3-D, and efficient im-
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plementations were already achieved on massively parallel architectures both in the case of CPUs and GPUs [8–11]. The 
major challenges of the VPM method and vortex methods in general most probably reside in the enforcement of the zero-
divergence of the vorticity field in 3-D simulations, on the one hand, and in the treatment of wall-bounded flows, on the 
other hand. For further and extensive information on vortex methods, one can refer to the book of Cottet and Koutmout-
sakos [1] and the chapter of Winckelmans in [2], as well as to the references therein.

When compressibility effects can be neglected, numerous studies demonstrated the validity of the strategy of using 
an incompressible flow solver in conjunction with acoustic analogies so as to predict the far field sound. Of course, vortex 
methods have been no exception (e.g. Knio et al. [12], Pothou et al. [13], Jeon et al. [14] and the extensive review of Colonius 
and Lele [15]) due to their ability to accurately follow the evolution of the vorticity field, which is of primary importance in 
sound generation. We also note the work of Huberson et al. in the context of helicopter noise [16]. The strategy implemented 
consisted in employing a VPM methodology to solve the three-dimensional unsteady inviscid and incompressible flow past 
a body, the results of which being used as an input for the acoustic wave equation. A section-by-section 2-D compressible 
Euler correction was used when the compressibility effects could not be neglected (e.g. on the advancing blade).

Some efforts have already been made to bring the Vortex Particle method to the compressible regime: see e.g. the review 
of Winckelmans [2], the paper of Eldredge et al. [17], and references therein. We will here focus on the VP method for fully 
compressible flows of Eldredge et al. [17] and the existing VPM methods for compressible flows [18–20] as they are the 
most closely related to the methodology proposed in this paper.

Eldredge et al. [17] developed a high-order remeshed VP method devoted to the simulation of two-dimensional com-
pressible and viscous flows. It will be here referred to as the DVP solver, which stands for Dilating Vortex Particle solver, 
as in the original paper. The method follows the evolution of integrated quantities over a material volume of the vorticity, 
ω = ∇ × u, (as in an incompressible flow solver), the dilatation (i.e. the divergence of the velocity field, θ = ∇ · u), the 
density, the enthalpy and the entropy fields. The Helmholtz decomposition is used to compute the velocity field, which is 
induced by the vorticity field, and the dilatation field, and with the further addition of an imposed far-field potential flow in 
some cases. Solving for velocity in this Helmholtz decomposition entails the resolution of Poisson equations. In [17], those 
are solved using a Fast Multipole Method (FMM) [21] adapted to also take into account the dilatation. The DVP solver also 
relied on an extension of Particle Strength Exchange (PSE) schemes to allow the high-order evaluation of arbitrary spatial 
differential operators [22]. One-sided stencils were also developed and allowed the enforcement of the required nonreflect-
ing boundary condition needed to truncate the unbounded domain. Eldredge et al. used an eighth-order accurate kernel 
in the interior of the domain and a second-order accurate kernel to compute the one-sided derivatives at the boundaries. 
A sixth-order template function was used as the blob function and also as the particle redistribution kernel. This high-order 
kernel also exhibited a filtering capability. Those two features were necessary to preserve the smoothness of the enthalpy 
field during the remeshing procedure. The DVP solver was used to simulate several complex fully compressible flows; the 
baroclinic generation of vorticity, the sound generation by a co-rotating vortex pair [17]. The resulting scheme was shown 
to be consistent and in very good agreement with the results of Mitchell et al. [23], who used an Eulerian solver with 
sixth-order Padé scheme to compute the spatial derivatives. The DVP solver was also used to carry out a thorough analysis 
of the dynamics and acoustics of viscous 2-D leapfrogging vortices [24].

Regarding the VPM methodology, Thirifay and Winckelmans developed a remeshed VP method dedicated to the study of 
reacting flows with heat release (and combustion problems especially), using the weakly compressible approximation [25,
2]; they also introduced mesh-based solvers to make it a VPM method referred to as a Vortex-in-Cell (VIC) method by the 
authors [18].1 In the weakly compressible case and contrarily to the fully compressible case, the compactness of the fields 
– one of the most attractive features of vortex methods – can still be usefully exploited.

Following the work of Oxley [19], Papadakis and Voutsinas [20] coupled a low-order VPM solver for compressible flows 
with a near-body Eulerian code solving the compressible Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations. 
As it intrinsically and conveniently allows the use of a non-isotropic grid, the Eulerian solver is responsible for the near-
body region, while the Eulerian–Lagrangian VPM method is exploited in the wake. The Poisson problems with unbounded 
boundary conditions were dealt with using a solver [26] based on the James–Lackner algorithm [27,28] and the Method of 
Local Corrections [29,30]. The viscous terms were accounted for using a PSE scheme on the grid. The solver was parallelized 
using a noniterative domain decomposition technique [26]. The particles were periodically remeshed using the third-order 
accurate M ′

4 scheme.
The PSE-like methodology exploited in [17] replaces the differential operators by integral operators that eventually re-

quire a quadrature to be applied over the particles. Such an implementation is based on nearest neighbors finding and is 
thus less computationally efficient than a mesh-based evaluation. The latter is adopted in the present work as it allows the 
use of an underlying grid giving access to efficient grid-based solvers and operators.

Additionally, Eldredge et al. used for their redistribution a high-order and large support interpolation kernel that included 
some degree of smoothing. In this paper, we wish to pursue an approach in which we regain separate controls over the 
explicit filtering of fields and the particle remeshing procedure, which does involve some implicit smoothing; this allows 
more flexibility for operations subject to different constraints on their application frequency. It also allows to benefit from 
recent advances in high-order interpolation kernels and in high-order grid-based filters.

1 For the sake of clarity, we here stick with the VPM naming.
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