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We introduce a fast algorithm for computing volume potentials – that is, the convolution 
of a translation invariant, free-space Green’s function with a compactly supported source 
distribution defined on a uniform grid. The algorithm relies on regularizing the Fourier 
transform of the Green’s function by cutting off the interaction in physical space beyond 
the domain of interest. This permits the straightforward application of trapezoidal 
quadrature and the standard FFT, with superalgebraic convergence for smooth data. 
Moreover, the method can be interpreted as employing a Nystrom discretization of the 
corresponding integral operator, with matrix entries which can be obtained explicitly and 
rapidly. This is of use in the design of preconditioners or fast direct solvers for a variety of 
volume integral equations. The method proposed permits the computation of any derivative 
of the potential, at the cost of an additional FFT.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in scientific computing require the solution of a constant coefficient elliptic partial differential equation 
subject to suitable boundary or radiation conditions. In many cases, the free-space Green’s function for the corresponding 
equation is known but involves nonlocal (long-range) interactions. A typical example is the Helmholtz equation in Rd

�φ + k2φ = f ,

where φ can be thought of as an acoustic potential and f a known distribution of acoustic sources, which we assume to 
be supported in the bounded domain D = [− 1

2 , 12 ]d . This can be done without loss of generality by rescaling the Helmholtz 
parameter k. The solution which satisfies the Sommerfeld radiation condition is well-known to be

φ(x) =
∫
D

gk(x − y) f (y)d y, (1)

where gk(r) = 1
4i H0(kr) for d = 2 and gk(r) = 1

4π
eikr

r for d = 3. Here, r = ‖r‖2 and H0 denotes the zeroth order Hankel 
function of the first kind.

Note that the interaction kernel is long-range, requiring fast algorithms to be practical, and singular at r = 0, requiring 
accurate quadrature techniques. In some applications, a third difficulty is that the source density f is highly inhomogeneous, 
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requiring adaptive discretization. In such settings, intrinsically adaptive, hierarchical methods are required [1–4]. When the 
density is smooth, however, and well-resolved by a uniform mesh, it is more convenient (and generally more efficient) to 
use Fourier methods. We restrict our attention to the latter case in the present paper.

There are two distinct ways in which Fourier methods can be applied to the computation of (1). The first is the direct 
discretization of the equation with a locally-corrected trapezoidal rule. In the two-dimensional setting, for example, one can 
discretize D with a uniform mesh of N2 points and use the approximation

φ(nh,mh) ≈
∑

n′,m′∈[− N
2 , N

2 ]
|n−n′|,|m−m′|>k

gk((n − n′)h, (m − m′)h) f (n′h,m′h)h2 +

∑
n′,m′∈[− N

2 , N
2 ]

|n−n′|,|m−m′|≤k

wn−n′,m−m′ f (n′h,m′h) ,

where h = 1
N . Several groups have shown that kth order accuracy can be achieved in this manner by a suitable choice of 

weights wi, j (see, for example, [5–10]). The net sum takes the form of a discrete (aperiodic) convolution and, hence, can be 
computed using the FFT with zero-padding in O (N2 log N) operations.

Alternatively, using the convolution theorem, one can write

φ(x) = F−1
(

F (s)

|s|2 − k2

)
=

(
1

2π

)d ∫
Rd

eis·x F (s)

|s|2 − k2
ds , (2)

where

F (s) = F ( f )(s) =
∫
D

e−is·x f (x)dx . (3)

F here denotes the Fourier transform. The fact that f (x) is smooth permits us to compute the Fourier integral in (3)
with “spectral” accuracy. It also ensures that the error in truncating the Fourier integral in the inverse transform (2) is 
rapidly decaying with |s|. The principal difficulty in employing Fourier methods is the singularity 1

|s|2−k2 in the integrand. 
In the case of the Poisson equation, this is simply 1

|s|2 .

It is possible to design high order rules for the inverse Fourier transform. In the case of the Poisson equation in three 
dimensions, for example, switching to spherical coordinates cancels the singularity entirely. Combining this with the nonuni-
form FFT yields more or less optimal schemes in terms of CPU time (see [11] and the references therein). This approach 
becomes technically more complicated for the Helmholtz equation, where the singularity lives on the sphere |s| = k.

It turns out that there is a simple method that works for all long-range Green’s functions, independent of dimension, 
requires only the trapezoidal rule, achieves spectral accuracy, and is accelerated by the standard FFT. Moreover, the matrix 
entries corresponding to this high order method are easily computed – a useful feature for either preconditioning strategies 
or direct solvers when using volume integral methods to solve variable coefficient partial differential equations.

Let us suppose, for the sake of simplicity, that we seek the restriction of the solution φ(x) to the unit box D ⊂ Rd . Then, 
the maximum distance between any source and target point in D is 

√
d. We define

gL
k (r) =

⎧⎪⎪⎨⎪⎪⎩
1

4i
H0(kr) rect

( r

2L

)
if d = 2

1

4π

eikr

r
rect

( r

2L

)
if d = 3

(4)

with rect(x) defined to be the characteristic function for the unit interval:

rect(x) =
{

1 for |x| < 1/2
0 for |x| > 1/2.

If we set L >
√

d in d dimensions, then the solution (1) is clearly indistinguishable from

φ(x) =
∫
D

gL
k (x − y) f (y)d y. (5)

Since gL
k is compactly supported, the Paley–Wiener theorem implies that its Fourier transform G L

k is entire (and C∞). 
Moreover, as we shall see below, it is straightforward to compute. In the case of the Laplace operator in three dimensions, 
for example, G L

0 = 2(
sin(Ls/2)

s )2. Thus, the Poisson equation in three dimensions has the solution
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