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A fast accurate approximation method with multigrid solver is proposed to solve a two-
dimensional fractional sub-diffusion equation. Using the finite difference discretization of 
fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each 
main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea 
is to make use of the block ε-circulant approximation via fast Fourier transforms, so that 
the resulting task is to solve a block diagonal system, where each diagonal block matrix is 
the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show 
that the accuracy of the approximation scheme is of O (ε). Because of the special diagonal 
block structure, we employ the multigrid method to solve the resulting linear systems. 
The convergence of the multigrid method is studied. Numerical examples are presented 
to illustrate the accuracy of the proposed approximation scheme and the efficiency of the 
proposed solver.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider an initial-boundary value problem of two-dimensional fractional sub-diffusion equation (FSDE) [5,24]:
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α
t u = ∇·(p(x, y)∇u) + f (x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ T , (1.1)

u(x, y, t) = φ(x, y, t), (x, y) ∈ ∂Ω, 0 ≤ t ≤ T , (1.2)

u(x, y,0) = ψ(x, y), (x, y) ∈ Ω̄ = Ω ∪ ∂Ω, (1.3)

where Ω = (xL, xR) × (yL, yR) is a rectangular domain, ∇·(p(x, y)∇u) is the elliptic operator, p(x, y) is a smooth positive 
function such that ∀(x, y) ∈ Ω , p(x, y) ≥ p0 > 0 with p0 being a constant, ∂Ω is the boundary, f (x, y, t) is the source term, 
C
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t u is the Caputo’s derivative of order α (0 < α < 1) with respect to t defined by

C
0D

α
t u(x, y, t) = 1

�(1 − α)

t∫
0

∂u(x, y, s)

∂s
(t − s)−αds, (1.4)
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with �(x) denoting the gamma function, φ(x, y, t) and ψ(x, y) are the given Dirichlet boundary condition and initial condi-
tion, respectively.

The FSDE is a class of fractional differential equation, which has been widely and successfully used in modeling of 
description of fractional random walk, anomalous diffusive systems, unification of diffusion and wave propagation phe-
nomenon; see [1,4,12,17–19]. Since analytical solutions to FSDEs are often unavailable, many numerical schemes are pro-
posed for solving sub-diffusion problems (see [5–7,21,22,24,25]). The fractional differential operators are nonlocal, which 
leads to a character of history dependence and universal mutuality (see [24]). Hence, the computational cost is too expen-
sive for solving the discrete problems obtained from the FSDE. This motivates us to develop fast algorithm for numerical 
schemes. More precisely, the associated coefficient matrix having N × N blocks is usually of block lower triangular Toeplitz 
(BLTT) structure with each block being of size M2 × M2 when certain numerical scheme is applied on the FSDE (1.1)–(1.3). In 
general, direct solvers for the BLTT linear system are often time consuming. For example, block forward substitution method 
[8] as a direct solver requires at least O(N2 M2 + N M4) operations. When N or M is large, the number of operations for 
direct solvers becomes very large. Therefore, direct solvers may not be considered when the matrix size is large.

Block forward substitution method combined with some efficient iterative solvers for BLTT linear systems may reduce 
the complexity to O(N2M2) operations and only require O(N M2) storage. Alternatively, Zhang and Sun in [24] proposed 
the alternating direction implicit schemes for solving high dimensional FSDE whose resulting BLTT linear system can be 
directly solved with O(N2 M2) operations and O(N M2) storage requirement. Nevertheless, their method is only available 
for p(x, y) being a constant. Meanwhile, it has lower temporal accuracy compared with the non-ADI scheme. Even so, both 
of the above mentioned methods are still expensive, when N is large.

In order to reduce the computational cost, recently, Lu, Pang and Sun [15] proposed an approximate inversion method 
(AIM) for solving BLTT linear systems, which can be applied to the one dimensional FSDEs. More precisely, the corresponding 
BLTT matrix is firstly approximated by the block ε-circulant matrix [3,14], which can be block diagonalized via fast Fourier 
transform (FFT). Each block is a tri-diagonal matrix for the one dimensional case. Therefore, they can be inverted easily. The 
accuracy of the approximation scheme is shown to be of O (ε) under some sufficient conditions.

In this paper, we extend the AIM to solve the two-dimensional case. As in [15], the resulting discretized BLTT matrix is 
approximated by the block ε-circulant matrix via the FFT. Unlike that in [15], however, each block is no longer a tri-diagonal 
matrix since it is from the two dimensional problem. Indeed, to the two dimensional case, after block diagonalizing by the 
FFT, the resulting diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. 
Therefore, it would be extensive to invert it directly. To lower the computational workload, we propose to exploit the 
multigrid method (MGM) to solve the complex scalar shifted Laplacian linear systems, and establish the convergence of the 
corresponding multigrid solver. We also investigate the resulting BLTT matrix to satisfy the condition which can guarantee 
the accuracy of approximation to be of O (ε).

The proposed algorithm consists of two parts. The first part is for block diagonalization. The second part is for multigrid 
solvers. The computational cost is of O(M2 N log N) operations and the storage cost is of O(N M2) storage, respectively. 
Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of 
the proposed multigrid solver.

The rest of this paper is organized as follows. In Section 2, we propose the approximation method for solving (1.1)–(1.3)
and study the accuracy of the method. In Section 3, we use the multigrid method for solving linear systems generated by 
the approximation method, and analyze the convergence of MGM. In Section 4, experimental results are presented to show 
the accuracy and efficiency of the proposed method. Finally, some concluding remarks are given in Section 5.

2. The approximation method

In this section, we propose the AIM for solving (1.1)–(1.3) and give a sufficient condition to guarantee a high accuracy of 
the AIM.

For a positive integer N , let τ = T /N , tn = nτ (0 ≤ n ≤ N). Define the time-grid {tn|0 ≤ n ≤ N} for discretization of 
[0, T ], {un = u(·, tn)|0 ≤ n ≤ N}. For a given function w(t) defined on t ∈ [0, T ], define grid function {wn = w(tn)|0 ≤ n ≤ N}. 
Without loss of generality, we assume the approximation to C0 Dα

t w|t=tn to be
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α
t w|t=tn ≈ Dα

τ wn :=
n∑

i=1

g(α)
n−i wi + g(n,α)w0, 1 ≤ n ≤ N, (2.1)

where g(α)
i (i = 0, 1, ..., N), g(i,α) (i = 1, ..., N) are constants dependent on α, i, and N , which vary in different finite 

difference schemes. We denote by B ∈ R
M2×M2

, the discretization of the elliptic operator −∇·(p(x, y)∇u). We assume that 
there are M2 spatial unknowns to be determined. Applying (2.1) and B to the FSDE (1.1)–(1.3), we obtain a BLTT linear 
system as follows:

Au = b, (2.2)

where u = (u1, u2, ..., uN ) is the unknown to be solved, b is a given vector containing information about f , φ and ψ on 
grid points,
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