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Available online 29 July 2016 approach, which is a method for computing effective dynamics of slowly changing

quantities in these systems, but which does not rely on the quasi-steady-state assumption
(QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems

Is(teg:::;rsifc where the difference in timescales between the “fast” and “slow” variables is not so
Multiscale pronounced.

Chemical kinetics This new application of the constrained approach allows us to compute the effective
Constrained dynamics generator of the slow variables, without the need for expensive stochastic simulations.

This is achieved by finding the null space of the generator of the constrained system.
For complex systems where this is not possible, or where the constrained subsystem is
itself multiscale, the constrained approach can then be applied iteratively. This results in
breaking the problem down into finding the solutions to many small eigenvalue problems,
which can be efficiently solved using standard methods.
Since this methodology does not rely on the quasi steady-state assumption, the effective
dynamics that are approximated are highly accurate, and in the case of systems with
only monomolecular reactions, are exact. We will demonstrate this with some numerics,
and also use the effective generators to sample paths of the slow variables which are
conditioned on their endpoints, a task which would be computationally intractable for the
generator of the full system.
© 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding of the biochemical reactions that govern cell function and regulation is key to a whole range of biomedical
and biological applications and understanding mathematical modelling of gene regulatory networks has been an area of
huge expansion over the last half century. Due to the low copy numbers of some chemical species within the cell, the
random and sporadic nature of individual reactions can play a key part in the dynamics of the system, which cannot be well
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approximated by ODEs [13]. Methods for the simulation of such a system, such as Gillespie’s stochastic simulation algorithm
(SSA) [18], (or the similar Bortz-Kalos-Lebowitz algorithm [5] specifically for Ising spin systems), have been around for some
decades. Versions which are more computationally efficient have also been developed in the intermediate years [7,17].

Unfortunately, their application to many systems can be very computationally expensive, since the algorithms simulate
every single reaction individually. If the system is multiscale, i.e. there are some reactions (fast reactions) which are hap-
pening many times on a timescale for which others (slow reactions) are unlikely to happen at all, then in order for us to
understand the occurrences of the slow reactions, an unfeasible number of fast reactions must be simulated. This is the
motivation for numerical methods which allow us to approximate the dynamics of the slowly changing quantities in the
system, without the need for simulating all of the fast reactions.

For systems which are assumed to be well-mixed, there are many different approaches and methods which have been
developed. For example the 7-leap method [20] speeds up the simulation by timestepping by an increment within which
several reactions may occur. This can lead to problems when the copy numbers of one or more of the species approach
zero, and a number of different methods for overcoming this have been presented [2,31].

Several other methods are based on the quasi steady-state assumption (QSSA). This is the assumption that the fast
variables converge in distribution in a time which is negligible in comparison with the rate of change of the slow variable.
Through this assumption, a simple analysis of the fast subsystem yields an approximation of the dynamics of the slow
variables. This fast subsystem can be analysed in several ways, either through analysis and approximation [6], or through
direct simulation of the fast subsystem [11].

Another approach is to approximate the system by a continuous state-space stochastic differential equation (SDE),
through the chemical Langevin equation (CLE) [19]. This system can then be simulated using numerical methods for SDEs.
An alternative approach is to approximate only the slow variables by an SDE. The SDE parameters can be found using bursts
of stochastic simulation of the system, initialised at a particular point on the slow state space [15], the so-called “equation-
free” approach. This was further developed into the constrained multiscale algorithm (CMA) [9], which used a version of the
SSA which also constrained the slow variables to a particular value. Using a similar approach to [6], the CMA can similarly
be adapted so that approximations of the invariant distribution of this constrained system can be made without the need
for expensive stochastic simulations [10]. However, depending on the system, as with the slow-scale SSA, these approxima-
tions may incur errors. Work on how to efficiently approximate the results of multiscale kinetic Monte Carlo problems is
also being undertaken in many different applications such as Ising models and lattice gas models [24].

Analysis of mathematical models of gene regulatory networks (GRNs) is important for a number of reasons. It can give
us further insight into how important biological processes within the cell, such as the circadian clock [33] or the cell
cycle [23] work. In order for these models to be constructed, we need to observe how these systems work in the first place.
Many of the observation techniques, such as the DNA microarray [27], are notoriously subject to a large amount of noise.
Moreover, since the systems themselves are stochastic, the problem of identifying the structure of the network from this
data is very difficult. As such, the inverse problem of characterising a GRN from observations is a big challenge facing our
community [21].

One popular approach to dealing with inverse problems, is to use a Bayesian framework. The Bayesian approach allows us
to combine prior knowledge about the system, complex models and the observations in a mathematically rigorous way [29].
In the context of GRNs, we only have noisy observations of the concentrations of species at a set of discrete times. As such,
we have a lot of missing information. This missing data can be added to the state space of quantities that we wish to
infer from the data that we do have. This complex probability distribution on both the true trajectories of the chemical
concentrations, and on the network itself, can be sampled from using Markov chain Monte Carlo (MCMC) methods, in
particular a Gibb’s sampler [16]. Within this Gibb’s sampler, we need a method for sampling a continuous path for the
chemical concentrations given a guess at the reaction parameters, and our noisy measurements. Exact methods for sampling
paths conditioned on their endpoints have been developed [16,25].

In other applications, methods for path analysis and path sampling have been developed, for example discrete path
sampling databases for discrete time Markov chains [32], or where the probability of paths, rather than that of trajectories
of discrete Markov processes can be used to analyse behaviour [30]. In [12], a method for transition path sampling is
presented for protein folding, where the Markov chain has absorbing states. Other approaches for coarse-graining transition
path sampling in protein folding also exist [3]. Other methods also exist for the simulation of rare events where we wish to
sample paths transitioning from one stable region to another [4].

The problems become even more difficult when, as is often the case, the systems in question are also multiscale. This
means that these inverse problems require a degree of knowledge from a large number of areas of mathematics. Even
though many of the approaches that are being developed are currently out of reach in terms of our current computational
capacity, this capacity is continually improving. In this paper we aim to progress this methodology in a couple of areas.

1.1. Conditioned path sampling methods

We will briefly review the method presented in [16] for the exact sampling of conditioned paths in stochastic chemical
networks. Suppose that we have a Markov jump process, possibly constructed from such a network, with a generator G. The
generator of such a process is the operator G such that the master equation of the system can be expressed as
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