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This paper presents a new approach, so-called boundary variation diminishing (BVD), for 
reconstructions that minimize the discontinuities (jumps) at cell interfaces in Godunov 
type schemes. It is motivated by the observation that diminishing the jump at the 
cell boundary can effectively reduce the dissipation in numerical flux. Differently from 
the existing practices which seek high-order polynomials within mesh cells while 
assuming discontinuities being always at the cell interfaces, the BVD strategy presented 
in this paper switches between a high-order polynomial and a jump-like reconstruction 
that allows a discontinuity being partly represented within the mesh cell rather than 
at the interface. Excellent numerical results have been obtained for both scalar and 
Euler conservation laws with substantially improved solution quality in comparison 
with the existing methods. It is shown that new schemes of high fidelity for both 
continuous and discontinuous solutions can be devised by the BVD guideline with 
properly-chosen candidate reconstruction schemes. This work provides a simple and 
accurate alternative of great practical significance to the current high-order Godunov 
paradigm which overly pursues the smoothness within mesh cells under the questionable 
premiss that discontinuities only appear at cell interfaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The high-resolution shock capturing schemes, which are now well-accepted as the main-stream numerical approach to 
solve hyperbolic conservation laws including the Euler equations for compressible gas dynamics, trace back to Godunov’s 
scheme [13]. The original Godunov scheme is a conservative finite-volume method (FVM) with piece-wise constant re-
construction, and the fluxes at cell boundaries are computed by solving the exact Riemann problem given the piece-wise 
constant physical fields in the two neighboring cells which usually results in a jump at cell boundaries. In general, Godunov 
schemes consist of two essential steps in solution procedure, i.e. (I) reconstruct the physical fields to find the values at the 
left- and right- sides of cell boundaries, and (II) evaluate the numerical fluxes at cell boundaries that are needed in the FVM 
formulation to update the cell-integrated values for next time step.

For step (II), interested readers are referred to [38] for a monographic review. The main interest of this paper is limited 
to step (I), i.e. reconstruction. Continuous efforts have been devoted in the past half century to develop the original Godunov 
scheme into a class of high-resolution conservative schemes. Instead of the piece-wise constant approximation which leads 
to a first-order scheme, higher order polynomials have been used to improve the accuracy (convergence rate for smooth 
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solution). In order to get around the so-called Godunov barrier for linear schemes which states that any monotonic linear 
scheme can be of only first order, non-linear numerical dissipation has been introduced to high-order schemes to suppress 
spurious oscillations in the vicinity of discontinuities. The non-linear numerical dissipation has been devised in different 
forms seen in the literature as either flux limiters in flux-corrected transport (FCT) scheme [5,44] and total variation di-
minishing (TVD) scheme [14,36] or slope limiters in monotone upstream-centered schemes for conservation law (MUSCL) 
scheme [39,40]. The later gives a more straightforward interpretation of the polynomial-based reconstruction for high-order 
schemes, and shows a clear path to design high-resolution schemes using modified high-order polynomials. Representative 
schemes of this kind are piecewise parabolic method (PPM) method [9], essentially non-oscillatory scheme (ENO) [15,32,33,
12] and weighted essentially non-oscillatory (WENO) scheme [21,19,31]. WENO concept provides a general framework to 
develop high-resolution schemes that are able to reach the highest possible accuracy over a given mesh stencil for smooth 
solution, and effectively stabilize the numerical solutions which include discontinuities. Successive works on WENO scheme 
are found in designing better smoothness indicators and nonlinear weights [16,4,3,30,17,20] to improve solution quality, as 
well as implementing the WENO concept to different discretization frameworks [10,25,28,22].

Starting from the piecewise constant approximation in the original Godunov scheme, the development of high-order 
shock capturing schemes has evidenced a history of efforts to reduce the difference between the reconstructed left- and 
right-side values at cell boundaries for smooth solutions. This observation, however to our knowledge, has not been paid 
enough attention, nor explored further as a prospective guideline to construct new schemes.

In this work, we propose a new guideline to design high-resolution schemes, called boundary variation diminishing (BVD) 
reconstruction. The BVD reconstruction shows consistent results with the observation gained for smooth solutions as men-
tioned above. More importantly, it also provides a principle to devise the reconstruction for discontinuity. We demonstrate 
in this paper the BVD reconstruction based on some existing schemes, i.e. the 5th-order WENO-Z method [4], the 5th-order 
targeted ENO (TENO5) method [12] and the THINC (Tangent of Hyperbola for INterface Capturing) method [42,43,34].

This paper is composed as follows. We present the BVD principle in Section 2, as well as the reconstruction schemes 
that fit separately smooth and discontinuous profiles as the building blocks for the BVD algorithm. The BVD-based numerical 
methods are then extensively verified in Section 3 with widely used benchmark tests, which demonstrate the significance 
and impact of the presented methods in resolving both smooth and discontinuous solutions. The paper ends with a brief 
summary in Section 4.

2. Numerical algorithm

We use a scalar conservation law in the following form to present the BVD algorithm
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where u(x, t) is the solution function and f (u) the flux function. For a hyperbolic equation, α = f ′(u) is a real number, the 
characteristic speed.
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formulations on non-uniform meshes can be constructed under the same concept.

Using an FVM framework, we define the volume-integrated average (VIA) of the solution function u(x, t) for cell Ii as
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where the numerical fluxes at cell boundaries are computed by a Riemann solver
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using the left-side value uL and right-side value uR obtained from the reconstructions over left- and right-biased stencils. 
In spite of different variants, the Riemann flux is essentially upwinding and can be thus written in a canonical form as
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