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We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm 
for smoothed particle magnetohydrodynamics (SPMHD) that remains conservative with 
wave cleaning speeds which vary in space and time. This is accomplished by evolving 
the quantity ψ/ch instead of ψ . Doing so allows each particle to carry an individual wave 
cleaning speed, ch, that can evolve in time without needing an explicit prescription for how 
it should evolve, preventing circumstances which we demonstrate could lead to runaway 
energy growth related to variable wave cleaning speeds. This modification requires only a 
minor adjustment to the cleaning equations and is trivial to adopt in existing codes. Finally, 
we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, 
run for a large number of iterations, can reduce the divergence of the magnetic field to an 
arbitrarily small value, achieving ∇ · B = 0 to machine precision.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Accurately evolving the equations of magnetohydrodynamics (MHD) in numerical simulations is crucial in astrophysi-
cal fluid dynamics. In smoothed particle magnetohydrodynamics (SPMHD) [14,25,32–34,28], upholding the divergence-free 
constraint of the magnetic field has been the main technical difficulty. The usual approach is to evolve the magnetic field 
directly by the induction equation (as in [25]), but this preserves a divergence-free magnetic field only to truncation error. 
These errors cause more harm than just yielding an unphysical field. They introduce spurious monopole accelerations, which 
have to be carefully handled in SPMHD in order to ensure numerical stability, at the price of no longer exactly conserving 
momentum [25,22,3]. Handling the divergence-free constraint on the magnetic field is therefore one of the most important 
aspects of accurate SPMHD simulations.

One option is to define the magnetic field in a way that manifestly enforces the divergence-free constraint. Use of the 
Euler potentials, B = ∇α × ∇β where α and β are passive scalars, was proposed as early as Phillips and Monaghan [25], 
and recently the potentials have been used for simulations of protostar formation [29], star cluster formation [30,31] and 
magnetised galaxies [12,17]. However, the Euler potentials cannot represent winding motions, prevent dynamo processes by 
construction [6], and it is not clear how to incorporate non-ideal dissipation. A vector potential implementation, B = ∇ × A, 
was tested for SPMHD by Price [27], but was found to be numerically unstable. Stasyszyn and Elstner [37] recently proposed 
that the vector potential could be used, if one added numerical diffusion to the potential, enforced the Coulomb gauge 
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condition on the vector potential (∇ · A = 0) and smoothed the resulting magnetic field, though it is not clear how robust 
this approach is in practice.

The second option to handle the divergence-free constraint in SPMHD is to directly evolve the magnetic field with the 
induction equation, but then ‘clean’ errors out of the field. For example, parabolic diffusion terms can be used to smooth 
the magnetic field at the resolution scale [22]. The artificial resistivity formulation of Price and Monaghan [32,34] has been 
used for this purpose [e.g., [8]], however, artificial resistivity is intended for shock capturing and dissipates physical as well 
as unphysical components of the field. A similar idea is to periodically smooth the magnetic field to remove fluctuations 
below the resolution limit [3], but this adds computational expense, is time resolution dependent, and reduces the spatial 
resolution of the magnetic field.

At present, the best option for divergence cleaning in SPMHD is the ‘constrained’ hyperbolic/parabolic divergence cleaning 
method of Tricco and Price [41], an improved version of the method by Dedner et al. [10]. The original idea from Dedner 
et al. [10] was to couple an additional scalar field, ψ , to the induction equation according to

∂B

∂t
= ∇ × (v × B) − ∇ψ, (1)

∂ψ

∂t
= −c2

h(∇ · B) − ψ

τ
, (2)

where B is the magnetic field and v is the velocity. These may be combined to produce a damped wave equation for the 
divergence of the magnetic field,

∂2(∇ · B)

∂t2
− c2

h∇2(∇ · B) + 1

τ

∂(∇ · B)

∂t
= 0. (3)

From Equation (3), we see that Equation (1) and the first term on the right hand side of Equation (2) represent hyperbolic 
transport of divergence errors at a characteristic speed, ch, which we refer to as the ‘wave cleaning speed’. This is typically 
chosen to be the fast MHD wave speed so that it obeys the local Courant condition and does not impose any additional 
timestep constraint. The second term on the right hand side of Equation (2) produces parabolic diffusion on a timescale 
defined according to

τ ≡ h

σ ch
, (4)

where h is the smoothing length (resolution scale) and σ is a dimensionless constant with empirically determined optimal 
values of 0.3 and 1.0 in 2D and 3D, respectively [41]. The combination of hyperbolic and parabolic terms in Equations (1)–(2)
spreads the divergence of the magnetic field over a larger area, reducing the impact of any single large source of error, while 
also allowing the diffusion to be more effective.

In Tricco and Price [41], we showed that the original Dedner et al. [10] approach could be unstable at density jumps 
and free surfaces, leading to exponential growth of magnetic energy. To remedy this, we derived a version of the cleaning 
equations under the constraint that the hyperbolic transport should conserve energy. Though ψ is not a physical variable, 
conservation of energy for the hyperbolic term between the magnetic and ψ fields ensures that, when the parabolic term is 
included, magnetic energy can only ever be removed by divergence cleaning, never added, guaranteeing numerical stability. 
The ‘constrained’ or ‘conservative’ cleaning equations we derived in Tricco and Price [41] are given by

dB

dt
= (B · ∇)v − B(∇ · v) − ∇ψ, (5)

dψ

dt
= −c2

h(∇ · B) − ψ

τ
− 1

2
ψ(∇ · v), (6)

where d/dt ≡ ∂/∂t + v · ∇ is the Lagrangian time derivative. The formulation of the induction equation (Equation (5)) in the 
absence of the ∇ψ term follows the ‘divergence preserving scheme’ of Powell et al. [26] (see also [16,11]), meaning that 
divergence errors are preserved by the flow in the absence of cleaning. The third term in Equation (6) was introduced by 
Tricco and Price [41] to account for changes in ψ from compression or rarefaction of the gas, and is necessary to ensure 
total energy conservation in the absence of damping. The practical advantage of this algorithm for SPMHD is that it adds no 
additional timestep constraint, is simple to implement, computationally efficient, and has been successfully used to enforce 
the divergence-free constraint in simulations of jets and outflows during protostar formation [35,2,18,45]. However, our 
original method was derived assuming that the cleaning speed, ch, is constant in both space and time, but this is not true 
in practice and presents a source of non-conservation of energy. Furthermore, source terms are added to the right hand 
side of Equation (3) when ch or τ are time or spatially variable, by the addition of the 1

2 ψ(∇ · v) term, and by solving the 
cleaning equations in the Lagrangian frame of motion. How these source terms change the propagation of divergence errors 
is not properly understood, but will be addressed in this work.

In this paper, we derive an improvement to constrained hyperbolic/parabolic divergence cleaning such that the hyper-
bolic evolution equations remain conservative even in the presence of a variable cleaning speed (Section 2). We demonstrate 
that these equations create a generalised wave equation which naturally incorporates the source terms (Section 2.7). Aspects 
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