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A hybrid reconstructed discontinuous Galerkin and continuous Galerkin method based 
on an incremental pressure projection formulation, termed rDG(PnPm) + CG(Pn) in this 
paper, is developed for solving the unsteady incompressible Navier–Stokes equations 
on unstructured grids. In this method, a reconstructed discontinuous Galerkin method 
(rDG(PnPm)) is used to discretize the velocity and a standard continuous Galerkin method 
(CG(Pn)) is used to approximate the pressure. The rDG(PnPm) + CG(Pn) method is designed 
to increase the accuracy of the hybrid DG(Pn) + CG(Pn) method and yet still satisfy 
Ladyženskaja–Babuška–Brezzi (LBB) condition, thus avoiding the pressure checkerboard 
instability. An upwind method is used to discretize the nonlinear convective fluxes in 
the momentum equations in order to suppress spurious oscillations in the velocity field. 
A number of incompressible flow problems for a variety of flow conditions are computed 
to numerically assess the spatial order of convergence of the rDG(PnPm) + CG(Pn) method. 
The numerical experiments indicate that both rDG(P0P1) + CG(P1) and rDG(P1P2) + CG(P1)

methods can attain the designed 2nd order and 3rd order accuracy in space for the velocity 
respectively. Moreover, the 3rd order rDG(P1P2) + CG(P1) method significantly outperforms 
its 2nd order rDG(P0P1) + CG(P1) and rDG(P1P1) + CG(P1) counterparts: being able to not 
only increase the accuracy of the velocity by one order but also improve the accuracy of 
the pressure.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The discontinuous Galerkin methods [3,8–13,17,26,27,33] (DGM) have become popular for the solution of systems of 
conservation laws in computational fluid dynamics in the past few decades. The discontinuous Galerkin methods combine 
two advantageous features commonly associated with finite element and finite volume methods. As in classical finite ele-
ment methods, the DGM achieve high order accuracy by means of high-order polynomial approximation within an element 
rather than by use of wider stencils as in the case of finite volume methods. The physics of wave propagation is, however, 
accounted for by solving Riemann problems that arise from the discontinuous representation of the solution at element 
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interfaces, which makes them similar to finite volume methods. The discontinuous Galerkin methods have many attractive 
features: (1) Their mathematical rigor implies useful mathematical properties with respect to conservation, stability and 
convergence; (2) The methods can be easily extended to higher-order (>2nd) approximations; (3) They are well suited 
for complex geometries since they can be applied on unstructured grids. In addition, the methods can also handle non-
conforming elements, where the grids are allowed to have hanging nodes; (4) The methods are highly parallelizable, as they 
are compact and each element is independent; (5) Since the elements are discontinuous, and the inter-element communi-
cations are minimal, domain decomposition can be efficiently employed. The compactness also allows for structured and 
simplified implementation and coding; (6) They can easily handle adaptive strategies, since refining or coarsening a grid 
can be achieved without considering the continuity restriction commonly associated with the conforming elements; (7) The 
methods allow easy implementation of hp-refinement, for example, the order of accuracy, or shape, can vary from element 
to element. p-refinement can be achieved by simply increasing the order of the approximation polynomial. However, the 
DGM have their own weaknesses. In particular, compared to the finite element methods and finite volume methods, the 
DGM require solutions of systems of equations with more unknowns for the same grids. Consequently, these methods have 
been recognized as expensive in terms of both computational costs and storage requirements especially in the context of 
implicit methods, where the memory requirement for the Jacobian matrix grows quadratically with the order of the DG 
methods, thus leading to a significant increase in computational cost.

In order to reduce high costs of the DGM, a new family of reconstructed discontinuous Galerkin methods [11–13,23,27,
28], termed PnPm schemes by Dumbser et al. and referred to as rDG(PnPm) in this paper, have been developed for solving 
the compressible Euler and Navier–Stokes equations. In the rDG(PnPm) methods, Pn indicates that a piecewise polynomial 
of degree of n is used to represent a DG solution, and Pm represents a reconstructed polynomial solution of degree of m 
(m ≥ n) that is used to compute the fluxes. The beauty of rDG(PnPm) schemes is that they provide a unified formulation for 
both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases 
of rDG(PnPm) schemes, and thus allow for a direct efficiency comparison. When n = 0, i.e. a piecewise constant polynomial 
is used to represent a numerical solution, rDG(P0Pm) is nothing but classical high order finite volume schemes, where a 
polynomial solution of degree m (m ≥ 1) is reconstructed from a piecewise constant solution. When m = n, the reconstruc-
tion reduces to the identity operator, and rDG(PnPn) scheme yields a standard DG method. Obviously, the construction of 
an accurate and efficient reconstruction operator is crucial to the success of the rDG(PnPm) schemes. In Dumbser’s work, 
a higher order polynomial solution is reconstructed using a L2 projection, requiring it to be indistinguishable from the un-
derlying DG solutions in the contributing cells in the weak sense. The resultant over-determined system is then solved using 
a least-squares method that guarantees exact conservation, not only of the cell averages but also of all higher order mo-
ments in the reconstructed cell itself, such as slopes and curvatures. However, this conservative least-squares reconstruction 
approach is computationally expensive, as the L2 projection, i.e., the operation of integration, is required to obtain the result-
ing over-determined system. Furthermore, the reconstruction might be problematic for a boundary cell, where the number 
of the face-neighboring cells might not be enough to provide the necessary information to recover a polynomial solution 
of a desired order. Fortunately, the projection-based reconstruction is not the only way to obtain a polynomial solution 
of higher order from the underlying discontinuous Galerkin solutions. In a reconstructed DG method using a Taylor basis 
[25,26] developed by Luo et al. for the solution of the compressible Euler and Navier–Stokes equations on arbitrary grids, 
a higher order polynomial solution is reconstructed by use of a strong interpolation, requiring point values and derivatives 
to be interpolated on the face-neighboring cells. The resulting over-determined linear system of equations is then solved in 
the least-squares sense. This reconstruction scheme only involves von Neumann neighborhood, and thus is compact, simple, 
robust, and flexible. Like the projection-based reconstruction, the strong reconstruction scheme guarantees exact conser-
vation, not only of the cell averages but also of their slopes due to a judicious choice of the Taylor basis. A comparative 
study [27,29] on these reconstructed discontinuous Galerkin methods rDG(P1P2) to solve the compressible Euler equations 
on arbitrary grids indicates that the rDG methods can deliver the desired 3rd order of accuracy. They also significantly im-
prove the accuracy of the underlying 2nd order DG method. Thus, it can be concluded that the least-squares reconstruction 
method provides the best performance in terms of both accuracy and robustness.

A number of the DGM [1,2,4,20] have been developed for solving the incompressible Navier–Stokes equations. Bassi 
et al. [1,2] presented a DG method for the incompressible Navier–Stokes equations written in conservative form based on 
an artificial compressibility formulation. Botti, Di Pietro [4] and Kyriazis, Ekaterinaris [20] adopted the pressure-correction 
formulation [4–6,16,21,32] to solve the incompressible Navier–Stokes equations written in a non-conservative form. They 
use a continuous Galerkin CG(Pn) and CG(Pn−1) discretizations for the pressure field and DG(Pn) discretization for the 
velocity field in order to satisfy the Ladyženskaja–Babuška–Brezzi (LBB) condition. They report that the velocity converges 
with the order of n + 1 and the pressure at a convergence rate of n for both DG(Pn) + CG(Pn) and DG(Pn) + CG(Pn−1) spatial 
discretization. In addition, they observe a 2nd order of convergence in time for a range of Re (102, 103, 104).

Based on the success of the rDG methods for the compressible flows, the objective of this work is to develop a rDG 
method for solving the incompressible Navier–Stokes equations based on a projection formulation. The resulting algorithm 
is expected to be high-order accurate in space; be able to handle both steady and unsteady problems. In spite of being high-
order accurate, the algorithm must be computationally efficient and able to provide stable solutions to the incompressible 
Navier–Stokes equations. A reconstructed discontinuous Galerkin approximation (rDG(PnPm)) is used for the velocity field 
and a continuous Galerkin approximation (CG(Pm)) is used to discretize the pressure field. The developed hybrid method, 
rDG(PnPm) + CG(Pm), inherently satisfies the so-called LBB condition and thus can effectively avoid the pressure checker-
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