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The exponential propagation methods were applied in the past for accurate integration 
of the shallow water equations on the sphere. Despite obvious advantages related to the 
exact solution of the linear part of the system, their use for the solution of practical 
problems in geophysics has been limited because efficiency of the traditional algorithm 
for evaluating the exponential of Jacobian matrix is inadequate. In order to circumvent 
this limitation, we modify the existing scheme by using the Incomplete Orthogonalization 
Method instead of the Arnoldi iteration. We also propose a simple strategy to determine 
the initial size of the Krylov space using information from previous time instants. This 
strategy is ideally suited for the integration of fluid equations where the structure of the 
system Jacobian does not change rapidly between the subsequent time steps. A series 
of standard numerical tests performed with the shallow water model on a geodesic 
icosahedral grid shows that the new scheme achieves efficiency comparable to the semi-
implicit methods. This fact, combined with the accuracy and the mass conservation of the 
exponential propagation scheme, makes the presented method a good candidate for solving 
many practical problems, including numerical weather prediction.

Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The nonlinear partial differential equations, governing physical and chemical processes in continuous systems, are often 
solved using the method of lines [43] which leads to a large set of Ordinary Differential Equations (ODEs) of the form

du

dt
= F (u, t), u(0) = u0, (1)

where u ∈ Rn is the state vector, n indicates the number of degrees of freedom, and F is the function describing all forcings; 
F : Rn+1 −→ Rn .

The system described by Eq. (1) is typically stiff because it governs processes with different time scales. Consequently, 
the selection of an appropriate time integration scheme is of the foremost importance. In all situations when the stiffness 
comes from the linear part of F , the problem could be cast in a simpler form as
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du

dt
= Lu +N (u, t), (2)

where L and N are linear and nonlinear part respectively.
There are abundant examples of partial differential equations which lead to a semi-discrete form of Eq. (2). They include 

(see Minchev [23] for review): Allen–Cahn, Burgers, Cahn–Hilliard, Kuramoto–Sivashinsky, Navier–Stokes, shallow water, 
Swift–Hohenberg, nonlinear Schrödinger, convection–diffusion and convection–reaction–diffusion equations. The numerical 
solution of the set of semi-linear system described by Eq. (2) is often obtained using semi-implicit schemes where the linear 
term Lu is solved with the help of a method appropriate for the stiff problem (usually an implicit method) whereas the 
nonlinear part N (u, t) is solved explicitly. This methodology offers a rational compromise between requirements of accuracy 
and efficiency. The alternative strategy that has attracted increased attention in a number of diverse fields in recent years, 
is the exponential time integration method. It requires the evaluation of functions related to the exponential of the Jacobian 
matrix [14]. Methods belonging to this class offer very high accuracy and stability without a severe time step restriction of 
the explicit numerical schemes. Since their introduction in the late 1950s, several numerical software packages providing 
various implementations have been proposed [14]. For a recent review, see [17] and the references therein.

The exponential integration schemes based on the static splitting given by Eq. (2) were discussed by Beylkin et al. [4]
and Cox and Matthews [9]. The basic idea of these methods is quite simple. We begin from the multiplication of Eq. (2) by 
factor eLt and the integration over time step �t to obtain

un+1 = eL�t un +
�t∫

0

eL(�t−τ )N (u(n�t + τ ))dτ , (3)

where un , un+1 are solutions at times n and n + 1, �t is the time step and τ is the time. The exponential term is then 
evaluated using the methods discussed in [36] and the integral of the nonlinear term is approximated with an appropriate 
quadrature. It was shown that the methods of this class offer a very good accuracy and a realistic representation of the high 
frequencies in contrast to the traditional semi-implicit schemes [9].

Considering the results obtained with exponential integration methods in various areas of science, it is justified to in-
vestigate them in the context of numerical weather prediction where the selection of a time integration scheme is a key 
element. Traditionally, the meteorological equations are solved using the well-established Semi-Implicit Semi-Lagrangian 
(SISL) integration schemes, first introduced in the atmospheric community by André Robert [32] and [33]. The main ad-
vantage of these methods is that they are not limited by a stability-based CFL condition. Hence the time step size can be 
chosen solely on the basis of a desired accuracy.

The efficiency and robustness of the SISL methods for integrating meteorological equations led to their common use in 
many of the meteorological centers. Semi-Lagrangian schemes were further advanced by the development of the accurate 
parallel algebraic solvers [6,27]. The fully conservative algorithms were also implemented. Most of these advances have 
been motivated by the need to use parallel computing architectures in the optimum manner. The same consideration is the 
driving force behind the search of alternative techniques.

Different versions of the exponential time integrators have been studied in the meteorological context by numerous 
authors. Archibald et al. [2] used the scheme of Beylkin et al. [4], based on the assumption of static splitting described 
by Eq. (2), to solve the shallow water equations on the cubed sphere. Clancy and Pudykiewicz [8] applied the exponential 
propagation methods based on the dynamic linearization [40] to the shallow water system on an icosahedral geodesic grid. 
The basic principle of this method is outlined briefly as follows. After expanding Eq. (1) in a Taylor series around state u(tn)

at tn we obtain

du

dt
(t) = Fn +Jn · (u(t) − un) + R(u(t)), (4)

where un = u(tn), Fn = F (un), Jn = dF
du (un) and

R(u(t)) = F (u(t)) − Fn −Jn · (u(t) − un). (5)

The use of integrating factor e−Jn t on Eq. (4) yields

d

dt
(e−Jn t u(t)) = e−Jn t(Fn −Jnun) + e−Jn t R(u(t)). (6)

Integrating over [tn, tn + �tn] and multiplying by eJn(tn+�tn) leads to the integral form

u(tn + �tn) = un + (eJn�tn − I)J−1
n Fn +

tn+�tn∫
tn

eJn(tn+�tn−t)R(u(t))dt, (7)

where �tn indicates �t at the time step number n and I is the identity matrix. The methodology of linearization applied 
in this paper is discussed in [15,16,18].
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