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A new discretization scheme on Cartesian grids, namely, a “consistent direct discretization 
scheme”, is proposed for solving incompressible flows with convective and conjugate heat 
transfer around a solid object. The Navier–Stokes and the pressure Poisson equations are 
discretized directly even in the immediate vicinity of a solid boundary with the aid of 
the consistency between the face-velocity and the pressure gradient. From verifications 
in fundamental flow problems, the present method is found to significantly improve the 
accuracy of the velocity and the wall shear stress. It is also confirmed that the numerical 
results are less sensitive to the Courant number owing to the consistency between the 
velocity and pressure fields. The concept of the consistent direct discretization scheme is 
also explored for the thermal field; the energy equations for the fluid and solid phases 
are discretized directly while satisfying the thermal relations that should be valid at their 
interface. It takes different forms depending on the thermal boundary conditions: Dirichlet 
(isothermal) and Neumann (adiabatic/iso-heat-flux) boundary conditions for convective 
heat transfer and a fluid–solid thermal interaction for conjugate heat transfer. The validity 
of these discretizations is assessed by comparing the simulated results with analytical 
solutions for the respective thermal boundary conditions, and it is confirmed that the 
present schemes also show high accuracy for the thermal field. A significant improvement 
for the conjugate heat transfer problems is that the second-order spatial accuracy and 
numerical stability are maintained even under severe conditions of near-practical physical 
properties for the fluid and solid phases.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Heat transfer and fluid flow problems are widely observed in industrial applications, and they are strongly related to 
the performance, efficiency, and reliability of these systems. Therefore, it is important to understand complicated flow and 
thermal phenomena and adequately control them. Computational fluid dynamics (CFD) has been extensively used at various 
stages of engineering, including feasibility studies, testing and improvement of prototypes, and manufacturing design pro-
cesses, in order to reduce the time and cost of product development. In those simulations, boundary conforming structured 
and unstructured grids are commonly used. Although structured grids are suitable for simulations that require high grid 
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resolutions to resolve thin boundary layers or unstable shear layers, they are not practical for complex geometries. Un-
structured grids, such as tetrahedral grids, are comparatively appropriate for complex geometries, however, computational 
accuracy is strongly influenced by the quality of the mesh. Moreover, even with the use of unstructured grids, it is difficult 
to generate a computational mesh for extremely complex geometries, such as an automobile engine compartment. Thus, 
developing a simpler way to generate a mesh and shortening the duration of the total analysis cycle are crucial for using 
CFD in practical applications.

The Cartesian grid method, in which the underlying mesh does not need to conform with body geometries, is expected to 
be a feasible approach to overcome those issues. In the Cartesian grid method, there are a lot of variations for approximating 
the geometry. The voxel method [1], where the geometry is represented in a stepwise pattern, is a low-order approximation 
method, while higher-order methods include the immersed boundary (IB) method [2–7], the cut-cell method [8], the ghost 
fluid method [9,10], and the immersed interface method [11–13]. In general, application targets of the Cartesian grid method 
can be categorized into (a) flows with moving boundaries, (b) flows with complex geometries, and (c) multiphase flows. 
These methods are selected depending on desired accuracy and cost for the targets.

For incompressible flows, the immersed boundary method is probably the most widely employed Cartesian grid method. 
It is originated from the study by Peskin [2], where the presence of the solid body immersed in a fluid is modeled by the 
body-force on a fixed-rectangular grid by using the Dirac delta function. Because of its simple algorithm, the method and 
its evolved versions have been applied to various types of fluid–structure interaction problems of category (a) [2,14–16]. 
In order to relax the limitations on its numerical stability, especially for the rigid-body case, Mohd-Yusof [3] proposed the 
direct forcing approach, and further modifications suited to three-dimensional problems, were adopted by Fadlun et al. [4]. 
In the direct forcing approach, the velocity in the cell adjacent to an immersed boundary is obtained by interpolation 
between the velocities at the boundary and in the surrounding fluid cells. The method has found a variety of practical 
applications, primarily in category (b), e.g., flows inside an internal combustion piston assembly [4], in an impeller stirred 
tank [17], around a road vehicle model [18,19], and past a nuclear rod bundle [20]. Meanwhile, Ikeno and Kajishima [20]
discussed the inconsistency between the discretized forms of the momentum and pressure equations in the direct forcing 
approaches. They proposed a consistent scheme in accordance with its forcing strategy and confirmed the effectiveness of 
this scheme for several fundamental flow problems. Although the mass conservation and the corresponding accuracy are 
drastically improved by this simple treatment of the velocity-pressure consistency, the numerical accuracy is not always 
improved, and may even deteriorated under the conditions of low grid resolutions. As will be shown below, a deterioration 
in accuracy is usually caused by a nature of the most Cartesian grid methods as the momentum conservation is not directly 
satisfied near the boundary, where some interpolation/extrapolation procedures are employed for satisfying the no-slip 
condition. Therefore, it should be emphasized that solving the governing equations even in the immediate vicinity of the 
boundary is as important as maintaining the consistency between the velocity and pressure fields.

The immersed interface method [11–13] is one of the fixed-grid methods achieving higher-order spatial accuracy. The 
method resolves discontinuous interface by incorporating the jump condition into a finite difference formulation, thereby 
maintaining second-order accuracies for velocity and even for pressure fields when it is coupled with a projection method 
for the incompressible Navier–Stokes equation [11]. In the meantime, the discretization scheme tends to be complicated 
especially for some situations where different physical properties are applied for contiguous two phases, e.g., a fluid–solid 
thermal interaction problem which is one of the targets of the present study.

The Cartesian grid method has been also applied to heat transfer problems in a fluid including/bounded by solid surfaces. 
Generally, those problems are described with heat convection in the fluid and conduction in both phases. However, in heat 
transfer simulations, for simpler treatment than in the conjugate problems, isothermal conditions (Dirichlet-type boundary 
conditions) as well as adiabatic or iso-heat-flux conditions (Neumann-type boundary conditions) are often used. Previous 
studies have mostly dealt with Dirichlet boundary conditions [21–24], and there are a limited number of studies that imple-
ment Neumann boundary conditions. Pacheco et al. [25] and Pacheco-Vega et al. [26] proposed a successive determination 
algorithm of the temperature inside a body to match the prescribed heat flux at the immersed boundary. Zhang et al. [27]
proposed another implementation of a Neumann boundary condition; the temperature gradient at the boundary is evalu-
ated on layers of Lagrangian points along the body surface. The validity of these algorithms has been ascertained for various 
problems, such as natural convection in an inclined cavity, heat diffusion in an annulus, and convective heat transfer around 
a stationary/oscillatory cylinder. However, these algorithms are complicated, since they require special internal iterations 
within a time step or arrangements of additional virtual points. Moreover, it encounters in natural and practical situations 
that local heat flux develops within the solid object where neither boundary condition is applicable at the interface.

In a conjugate heat transfer problem where fluid and solid thermal fields are coupled at their interface, certain thermal 
relations at the interface regarding the continuity of the temperature and heat flux have hampered the application of the 
Cartesian grid methods. Although solving the energy equation for the averaged temperature with a weight of volume of the 
fluid/solid fraction [28] is an easy way to perform this type of simulation, the thermal relation at the fluid–solid interface is 
not satisfied. Pioneering work was performed by Yu et al. [29], who extended the fictitious-domain method by incorporat-
ing the interfacial thermal relation and then applied it to a conjugate heat transfer problem. More recently, Shao et al. [30]
combined the sharp-interface method with their fictitious-domain method in order to enhance its accuracy and computa-
tional efficiency. Kang et al. [31] proposed an implementation in their immersed boundary framework for a multi-material 
thermal interaction problem. Nagendra et al. [32] developed an IB method applicable to a boundary non-conforming mesh 
with curvilinear coordinates, in which treatments for various thermal boundary conditions for convective and conjugate 
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