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Runge–Kutta Discontinuous Galerkin (RKDG) and Discontinuous Finite Volume Element 
(DFVE) methods are applied to a coupled flow-transport problem describing the immiscible 
displacement of a viscous incompressible fluid in a non-homogeneous porous medium. 
The model problem consists of nonlinear pressure–velocity equations (assuming Brinkman 
flow) coupled to a nonlinear hyperbolic equation governing the mass balance (saturation 
equation). The mass conservation properties inherent to finite volume-based methods 
motivate a DFVE scheme for the approximation of the Brinkman flow in combination 
with a RKDG method for the spatio-temporal discretization of the saturation equation. 
The stability of the uncoupled schemes for the flow and for the saturation equations is
analyzed, and several numerical experiments illustrate the robustness of the numerical 
method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Scope

It is the purpose of this contribution to introduce a new numerical approach for the accurate simulation of viscous 
two-phase flow (for instance of oil and water) in a heterogeneous porous medium. The flow of the mixture is governed 
by the Brinkman model while the interaction of the two phases can be described by the fractional flow formalism, which 
translates into a transport equation of one phase that involves a nonlinear flux function. Since the medium is considered 
non-homogeneous, not only do the flow properties undergo abrupt changes (as does the permeability of the medium), but 
also the flux characterization will exhibit discontinuities associated to different nonlinearities adjacent to a discontinuity in 
the medium.

Specifically, the governing model is defined as follows. Let us consider a mixture of two fluids, a wetting phase and 
a non-wetting phase (e.g., water and oil) identified by the indices w and n, with saturations φw = φ and φn = 1 − φ, 
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respectively, in a domain � ⊂ R
2. If the fluids are incompressible and capillary forces are negligible, then the following 

model is adequate to describe the viscous motion of the mixture in a porous medium:

∂tφ + div F(φ, u, x) = 0 in � × (0, T ), (1.1a)

K−1(x)u − div
(
μ(φ)ε(u) − pI

)− φg = 0 in � × (0, T ), (1.1b)

div u = 0 in � × (0, T ), (1.1c)

supplied with suitable initial and boundary conditions. Here and elsewhere, div and div are used for the standard divergence 
of an arbitrary vector v ∈ R

2 and matrix A ∈R
2×2, i.e.,

div v :=
2∑

i=1

∂vi

∂xi
, div A :=

(
2∑

j=1

∂aij

∂x j

)
1≤i≤2

.

The primal unknowns are the volume average flow velocity of the mixture u, the saturation φ, and the pressure field p. 
In addition, μ(φ)ε(u) − pI is the Cauchy stress tensor, ε(u) = 1

2 (∇u + ∇uT) is the infinitesimal rate of strain, μ = μ(φ) is 
the saturation-dependent viscosity,

F(φ, u, x) = f (φ)u + b(φ)K(x)g (1.2)

is a nonlinear flux vector, K is the permeability tensor of the medium, and g is the gravity acceleration. Moreover, f and b
are given fractional flow functions that will be specified later.

We assume that K is symmetric, uniformly bounded and positive definite, and that μ and K−1 satisfy

μ,μ′ ∈ Lip(R+); ∃γ1,μmin,μmax > 0 : ∀s ∈R+ : μmin < μ(s) < μmax, |μ′(s)| ≤ γ1, (1.3)

∀x ∈ �; ∃ k1,k2 > 0 such that 0 < k1 ≤ K−1(x) ≤ k2, (1.4)

where the last inequalities are understood in a component-wise sense.
The numerical approximation of the system (1.1) calls for advanced techniques capable to accurately capture flux discon-

tinuities, and robust flow solvers that satisfy discrete maximum principles (φ must remain bounded between zero and one), 
produce divergence-free approximations of velocity, and ensure local mass conservation. It is known that classical meth-
ods (e.g. pure upwind finite volumes or primal finite elements and others) do not capture the behavior of the flow near 
the interface and may yield nonphysical solutions unless some sort of monotonicity-preserving slope limiter or high-order 
reconstruction is added. Other possible remedies include multi-point flux approximation, high-order DG or other noncon-
forming methods, phase field models, XFEM, or level set strategies. Regarding the flow equations (in this case, of Brinkman 
type), we are interested in accurate methods that would permit a natural development of error estimates (therefore associ-
ated with finite element formulations), that are mass conservative by construction (therefore related to mixed formulations, 
or to pure finite volume schemes), and which could easily handle unstructured meshes. These aspects are the prime motiva-
tion for proposing Discontinuous Finite Volume Element (DFVE) methods for the approximation of the Brinkman equations 
(1.1b), (1.1c) and Runge–Kutta Discontinuous Galerkin (RKDG) approximation of the saturation equation (1.1a). The main 
novelty of this paper is the particular numerical treatment of the two-phase flow equations (1.1) through the implementa-
tion of the RKDG scheme together with the DFVE method and the corresponding stability analysis. Since we have included 
the effect of gravity and the medium is heterogeneous, the flux function in (1.1a) is non-monotone in φ and discontinuous 
in x. These properties require an appropriate choice of the numerical flux in the RKDG formulation. Showing the robustness 
of numerical results that arise from incorporating the so-called DFLU flux of [2] into the RKDG formulation further adds to 
the novelty.

1.2. Related work

The Brinkman model exhibits the well-known advantage that one can represent both Stokes and Darcy flows without 
imposing explicit interface (e.g. Beavers–Joseph–Saffman) conditions. The latter are not necessarily consistent with mixture 
theory, and are quite difficult to treat numerically. In fact, several vectorial and scalar Lagrange multipliers need to be 
incorporated to impose energy conservation, as is done, for instance, in [3,16,28].

The model (1.1) is similar to the continuum-based description of sedimentation and consolidation of suspended particles 
recently discretized by FVE-related methods [14,41]. In turn, multiscale FVE methods were applied in [22,25] for the simu-
lation of two-phase flow in porous media. An adaptive FVE was proposed in [36] for a steady convection–diffusion–reaction 
problem. In [12,30] the authors propose and analyze unified DFVE methods for Stokes-transport and Darcy-transport prob-
lems, respectively; in [14] an axisymmetric sedimentation problem is discretized with a combination of continuous FVE and 
DFVE for Stokes and a degenerate parabolic equation, continuous FVE-based formulations for coupled Darcy and transport 
were proven to satisfy discrete maximum principles [23] and applied to Navier–Stokes–transport couplings in [37,41]; and 
a hybrid mixed FE–DFVE has been recently introduced in [40] for a larger class of multiphase flows in rigid and compliant 
porous media.
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