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A new methodology is proposed for generating realizations of a random vector with values 
in a finite-dimensional Euclidean space that are statistically consistent with a dataset of 
observations of this vector. The probability distribution of this random vector, while a priori
not known, is presumed to be concentrated on an unknown subset of the Euclidean space. 
A random matrix is introduced whose columns are independent copies of the random 
vector and for which the number of columns is the number of data points in the dataset. 
The approach is based on the use of (i) the multidimensional kernel-density estimation 
method for estimating the probability distribution of the random matrix, (ii) a MCMC 
method for generating realizations for the random matrix, (iii) the diffusion-maps approach 
for discovering and characterizing the geometry and the structure of the dataset, and 
(iv) a reduced-order representation of the random matrix, which is constructed using 
the diffusion-maps vectors associated with the first eigenvalues of the transition matrix 
relative to the given dataset. The convergence aspects of the proposed methodology are 
analyzed and a numerical validation is explored through three applications of increasing 
complexity. The proposed method is found to be robust to noise levels and data complexity 
as well as to the intrinsic dimension of data and the size of experimental datasets. Both 
the methodology and the underlying mathematical framework presented in this paper 
contribute new capabilities and perspectives at the interface of uncertainty quantification, 
statistical data analysis, stochastic modeling and associated statistical inverse problems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The construction of a generator of realizations from a given dataset related to an Rn-valued random vector, for which the 
probability distribution is unknown and is concentrated on an unknown subset Sn of Rn , is a central and difficult problem 
in uncertainty quantification and statistical data analysis, in stochastic modeling and associated statistical inverse problems 
for boundary value problems, in the design of experiments for random parameters, and certainly, in signal processing and 
machine learning. A common situation, addressed in the last example in the paper pertains to the availability of a limited 
number of high-dimensional samples (i.e. each sample has many attributes). In such cases it is often desirable to carry 
out a statistical analysis of the data for the purpose of inference. Acknowledging the local structure of the data, when 
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such structure exists, provides additional knowledge that should be valuable for an efficient characterization and sampling 
schemes. While the last example in the paper presents a problem in petrophysics, similar problems abound in all branches 
of science and engineering including biology, astronomy, and nuclear physics.

Two fundamental tools serve as building blocks for addressing this problem. First, nonparametric statistical methods 
[1,2] can be effectively used to construct probability distribution on Rn of a random vector given an initial dataset of 
its samples. Multidimensional Gaussian kernel-density estimation is one efficient subclass of these methods. Markov chain 
Monte Carlo (MCMC) procedures can then be used to sample additional realizations from the resulting probability model, 
and which are thus statistically consistent with the initial dataset [3–5]. The second building block consists of manifold 
embedding algorithms, where low-dimensional structure is characterized within a larger vector space. Diffusion maps [6–8]
is a powerful tool for characterizing and delineating Sn using the initial dataset and concepts of geometric diffusion.

The first tool described above, consisting of using nonparametric density estimation with MCMC, does not allow, in 
general, the restriction of new samples to the subset Sn on which the probability distribution is concentrated. The scatter 
of generated samples outside of Sn is more pronounced the more complex and disconnected this set is.

The second tool consisting of diffusion maps, while effectively allowing for the discovery and characterization of subset 
Sn on which the probability distribution is concentrated, does not give a direct approach for generating additional realiza-
tions in this subset that are drawn from a target distribution consistent with the initial dataset.

These two fundamental tools have been used independently and quite successfully to address problems of sampling from 
complex probability models and detecting low-dimensional manifolds in high-dimensional settings. An analysis of MCMC 
methods on Riemann manifolds has been presented recently [9] where the manifold is the locus of density functions and 
not of the data itself. This paper addresses the still open challenge of efficient statistical sampling on manifolds defined by 
limited data.

It should be noted that the PCA [10] yields a statistical reduction method for second-order random vectors in finite 
dimension, similarly to the Karhunen–Loève expansion (KLE) [11,12], which yields a statistical reduction method for second-
order stochastic processes and random fields, and which has been used for obtaining an efficient construction [13,14] of the 
polynomial chaos expansion (PCE) of stochastic processes and random fields [15], and for which some ingredients have more 
recently been introduced for analyzing complex problems encountered in uncertainty quantification [16,17]. A priori and in 
general, the PCA or the KLE, which use a nonlocal basis with respect to the dataset (global basis related to the covariance 
operator estimated with the dataset) does not allow for discovering and characterizing the subset on which the probability 
law is concentrated. The present work can be viewed as an extension and generalization of previous work by the authors 
where the low-dimensional manifold was unduly restricted [18–20].

After formalizing the problem in Section 2, the proposed methodology is presented in Section 3 and developed in Sec-
tion 4. Section 5 deals with three applications: the first two applications correspond to analytical examples in dimension 
2 with 230 given data points and in dimension 3 with 400 data points. The third application is related to a petro-physics 
database made up of experimental measurements for which the dimension is 35 with 13,056 given data points.

Comments concerning the motivation, the objectives, and the methodology

(i) As it has been previously explained, the fundamental hypothesis of this paper is that the solely available information 
are described by a given dataset of N independent realizations for the random vector H with values in Rν (which is as-
sumed to be second-order and not Gaussian). Consequently, the given dataset is represented by a given (ν × N) real matrix 
[ηd]. The objective of this paper is to construct a generator of new additional realizations in using the diffusion maps that 
allows for discovering the geometry of the subset Sν ⊂ Rν in which the unknown probability distribution is concentrated 
and consequently, permitting the enrichment of the knowledge that we have from the data. For constructing such a gen-
erator, a probability distribution (that is non-Gaussian and that must be coherent with the dataset) has to be constructed 
using what may be referred to as an indirect approach or a direct approach. An indirect approach consists in introducing 
a parameterized stochastic model that has the capability of generating the required realizations. For instance, a polynomial 
chaos expansion (PCE) can be introduced for which the coefficients must be identified by solving a statistical inverse prob-
lem. A direct approach consists in constructing an estimation of the probability distribution directly from the dataset, either 
by using parametric statistics (and then, by solving a statistical inverse problem for identifying the parameters) or by using 
nonparametric statistics. Concerning the parametric statistics, as it is assumed that no information is available in addition to 
the data set, information theory is not very useful for constructing a parameterized prior informative probability measure in 
the framework of parametric statistics. In any case, the method that would be selected must be able to take into account the 
information concerning the geometry of the subset Sν on which the probability distribution is concentrated (constructed 
with the diffusion maps), and must be computationally efficient for problems in high dimension. In this framework, the PCE 
is surely an attractive representation, but which cannot be easily implemented, because the statistical inverse problem for 
identifying the coefficients must be coupled with the formalism of the diffusion maps methodology, a non-trivial task. This 
motivates the approach followed in the present paper where nonparametric statistics are used to construct the probability 
density function of H for which a generator that belongs to the class of the MCMC methods is then developed. Concern-
ing the choice of the MCMC method, we propose to use the one that is based on an Itô stochastic differential equation. 
This choice allows us to capitalize on the geometry of Sν and to construct via projections, a restriction of the MCMC to 
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