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Many uncertainty quantification (UQ) approaches suffer from the curse of dimensionality, 
that is, their computational costs become intractable for problems involving a large 
number of uncertainty parameters. In these situations, the classic Monte Carlo often 
remains the preferred method of choice because its convergence rate O (n−1/2), where 
n is the required number of model simulations, does not depend on the dimension 
of the problem. However, many high-dimensional UQ problems are intrinsically low-
dimensional, because the variation of the quantity of interest (QoI) is often caused by 
only a few latent parameters varying within a low-dimensional subspace, known as the 
sufficient dimension reduction (SDR) subspace in the statistics literature. Motivated by 
this observation, we propose two inverse regression-based UQ algorithms (IRUQ) for high-
dimensional problems. Both algorithms use inverse regression to convert the original high-
dimensional problem to a low-dimensional one, which is then efficiently solved by building 
a response surface for the reduced model, for example via the polynomial chaos expansion. 
The first algorithm, which is for the situations where an exact SDR subspace exists, is 
proved to converge at rate O (n−1), hence much faster than MC. The second algorithm, 
which doesn’t require an exact SDR, employs the reduced model as a control variate to 
reduce the error of the MC estimate. The accuracy gain could still be significant, depending 
on how well the reduced model approximates the original high-dimensional one. IRUQ also 
provides several additional practical advantages: it is non-intrusive; it does not require 
computing the high-dimensional gradient of the QoI; and it reports an error bar so the 
user knows how reliable the result is.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation is a powerful tool for studying physical processes and predicting quantities of researchers’ interest. 
An accurate simulation relies on the knowledge of the parameter values that describe the characteristics of the system be-
ing simulated, such as material properties, initial and boundary conditions. However, in many applications, these parameter 
values are not exactly known to the modeler and thus are subject to uncertainties. In this situation, an uncertainty quan-
tification (UQ) procedure may be implemented to examine how the prediction of the quantity of interest (QoI) is affected 
by the uncertain parameters.
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A straightforward approach to UQ is the Monte Carlo (MC) method, which works by generating a large sample of model 
simulations based on different possible realizations of the uncertain parameters. Then the statistical properties of the QoI 
such as mean, variance, and probability density function (PDF) may be estimated from the sample. By the Central Limit 
Theorem, the MC estimator is root n consistent, that is, the estimation error converges to 0 in probability at the order of 
n−1/2, where n is the number of realizations generated [1, Chapter 2]. Since this convergence rate is relatively slow, a large 
number of model simulations are needed for an accurate estimation, which could be a huge computational burden and thus 
makes MC impractical except for simple, small-scale problems.

As an alternative to direct MC sampling via simulations, we can construct a response surface (also called a surrogate 
model, an emulator, or a proxy model in literature), which is an inexpensive approximate model for the relationship between 
the QoI and uncertain parameters. Examples of response surfaces for UQ include polynomial chaos (PC) expansion [2–4], 
Kriging interpolation or Gaussian process approximation [5–8]. Once a response surface is built, we can quickly generate 
realizations of the QoI without resorting to simulations on the original model and thus greatly reduce the computational 
cost. Moreover, some response surface models, for example the PC expansion, enable convenient analytic solutions of the 
statistical properties of the QoI.

However, most response surface-based UQ approaches are limited to low-dimensional problems, that is, problems in-
volving only a small number of uncertain parameters, because the computational effort required to build a response surface 
grows fast as the dimension of the problem increases. For example, when a response surface is built using the full tensor 
product-based collocation scheme, the computational cost (measured by the number of model evaluations at the collocation 
points) is an exponential function with respect to the dimension of the problem. Although this growth rate may be reduced 
with techniques such as the Smolyak-type sparse grid [9–11] or the functional ANOVA decomposition [12,13], the response 
surface methods could still lose their efficiency advantage over MC, which, in contrast, has a convergence rate that does 
not depend on the problem’s dimension. This difficulty is known as the curse of dimensionality. To mitigate this issue, a 
dimension reduction procedure is needed.

A commonly used dimension reduction method is principle component analysis (PCA) [14]. PCA reduces the dimension 
of the input of a UQ problem by making use of the correlations among different uncertain parameters. This correlation 
information is derived from the joint distribution of uncertain parameters, usually given as prior in a UQ problem. When 
the parameters are highly correlated, PCA is capable of representing the variations of all the uncertain parameters by a 
much smaller number of random variables, which are linear functions of the original uncertain parameters, called principal 
components. However, PCA results in no or little dimension reduction when the parameters are uncorrelated or only weakly 
correlated.

Moreover, PCA does not make use of the knowledge of how the QoI depends on the uncertain parameters, which can be 
immensely valuable for further reducing the dimension. For instance, different uncertain parameters in a model often have 
different levels of influence on the QoI. If we are able to identify the important parameters, say using sensitivity analysis, an 
anisotropic response surface may be built accordingly [15,13,16]. For example, a PC expansion may include more PC terms 
with respect to the important parameters and exclude the high-order PC terms with respect to the not-so-important param-
eters. Such a strategy allows for a high-dimensional PC expansion using relatively small number of terms without seriously 
compromising accuracy. However, sensitivity-analysis-based dimension reduction techniques cannot handle problems where 
different uncertain parameters have roughly equal impacts on the QoI.

Under these circumstances, one may consider sensitivity analysis in a more general sense, that is, to study the sensitivity 
of the QoI with respect to linear combinations of the uncertain parameters. Specifically, we rotate the coordinate system of 
the parameter space such that the QoI varies mainly along the directions of a few synthetic coordinates (linear combinations 
of original parameters). Then a low-dimensional response surface may be built with this small set of coordinates. Examples 
of such techniques include active subspace [17,18], basis adaptation [19], and compressive sensing [20]. By allowing coordi-
nate rotation, the generalized sensitivity analysis gives us extra freedom to drop more unimportant directions and thereby 
achieves further dimension reduction. Finding such generalized sensitivity information is a nontrivial task as it requires 
more knowledge about the model. For example, if the gradient of the model (i.e., the partial derivatives of the QoI with 
respect to the uncertain parameters) can be evaluated at a sample of parameter points, then the important directions are 
extracted by the average outer product of the model gradient [18]. However, evaluating the gradient at the sample points, 
especially for high-dimensional models, could be even more expensive than evaluating the QoI itself, which is what the MC 
approach requires for the UQ problem.

The idea of rotating the coordinates for building low-dimensional response surfaces is closely related to the notion of 
linear sufficient dimension reduction (SDR), which is based on the sufficiency principle and was first introduced in the 
context of multivariate regression [21]. Various approaches for searching SDRs have been developed [22–29], among which 
the most widely used is sliced inverse regression (SIR) [22]. This approach estimates SDR subspace by regressing the input 
parameters against the output QoI, hence the nomenclature inverse regression. During the past two decades, SIR achieved 
its popularity due to its theoretical soundness, implementational ease and wide applicability.

In this paper, we investigate an inverse-regression-based uncertainty quantification (IRUQ) approach for high-dimensional 
problems. Specifically, we use SIR to seek a low-dimensional SDR subspace for the QoI under study. After the dimension 
reduction, building an accurate response surface over the SDR subspace becomes computationally viable. This approach 
is non-intrusive, which means that its implementation requires only a simulator that evaluates the QoI with specified 
parameters. Neither the gradient information nor any other manipulation of the model’s internal structure is needed. Since 
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