Accepted Manuscript

A spectral-element dynamic model for the Large-Eddy simulation of turbulent flows

J.-B. Chapelier, G. Lodato

PII: S0021-9991(16)30196-6

DOI: http://dx.doi.org/10.1016/j.jcp.2016.05.051

Reference: YJCPH 6648

To appear in: Journal of Computational Physics

Received date: 23 February 2016 Revised date: 3 May 2016 Accepted date: 24 May 2016

Please cite this article in press as: J.-B. Chapelier, G. Lodato, A spectral-element dynamic model for the Large-Eddy simulation of turbulent flows, *J. Comput. Phys.* (2016), http://dx.doi.org/10.1016/j.jcp.2016.05.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Spectral-Element Dynamic Model for the Large-Eddy simulation of

turbulent flows.

J.-B. Chapelier^{a,*}, G. Lodato^a

^aNormandie Université, CNRS, INSA et Université de Rouen, CORIA UMR6614, 675 Avenue de l'Université, 76801

St. Etienne du Rouvray, France

Abstract

A spectral dynamic modeling procedure for Large-Eddy Simulation is introduced in the context

of discontinuous finite element methods. The proposed sub-grid scale model depends on a turbulence

sensor built from the computation of a polynomial energy spectrum in each of the discretization

elements. The evaluation of the energy decay gives an estimation of the quality of the resolution in

each element and allows for adapting the intensity of the sub-grid dissipation locally. This approach

is simple, robust, efficient and it is shown that the sub-grid model adapts to the amount of numerical

dissipation in order to provide an accurate representation of the true sub-grid stresses. The present

approach is tested for the large-eddy simulation of transitional, fully-developed and wall-bounded

turbulence. In particular, results are reported for the Taylor-Green vortex and periodic turbulent

channel flows at moderate Reynolds number. For these configurations, the new model shows an

accurate description of turbulent phenomena at relatively coarse resolutions.

Keywords: High-order methods, Spectral Difference method, Large-Eddy simulation, Dynamic

models.

1. Introduction

The Large-Eddy Simulation (LES) technique has become a tool of paramount importance for the

accurate prediction of high-Reynolds number turbulent flows. Due to its reduced cost compared to the

Direct Numerical Simulation (DNS) and the persistent increase in the available computational power,

the use of LES represents the most viable and sensible option to address configurations of academic

and industrial interest where, on the one hand, DNS would be unfeasible and, on the other, Reynolds

Averaged Navier-Stokes (RANS) simulation would fail (e.g., statistically unsteady or massively de-

*Corresponding author.

Email address: jb.chapelier@gmail.com (J.-B. Chapelier)

Download English Version:

https://daneshyari.com/en/article/6929771

Download Persian Version:

https://daneshyari.com/article/6929771

<u>Daneshyari.com</u>