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Many immersed boundary methods solve for surface stresses that impose the velocity 
boundary conditions on an immersed body. These surface stresses may contain spurious 
oscillations that make them ill-suited for representing the physical surface stresses on the 
body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history 
of integrated surface forces such as the coefficient of lift. While the errors in the surface 
stresses and forces do not necessarily affect the convergence of the velocity field, it is de-
sirable, especially in fluid–structure interaction problems, to obtain smooth and convergent 
stress distributions on the surface. To this end, we show that the equation for the surface 
stresses is an integral equation of the first kind whose ill-posedness is the source of spu-
rious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta 
functions, the oscillations may be filtered out to obtain physically accurate surface stresses. 
The filtering is applied as a post-processing procedure, so that the convergence of the ve-
locity field is unaffected. We demonstrate the efficacy of the method by computing stresses 
and forces that converge to the physical stresses and forces for several test problems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Immersed boundary (IB) methods are attractive for simulating flows around moving or deforming bodies, due in large 
part to their ability to treat the immersed body and the flow domain with separate grids. The use of different grids removes 
the need for remeshing, which is often computationally expensive. The original IB method of Peskin introduced a singular 
source term in the momentum equations that imposed the stresses from the immersed body onto the flow grid [1]. In that 
work, the surface stresses were derived using a specific constitutive law.

A different set of IB methods retains the use of a singular source term to impose the surface stresses, but derives 
these stresses using velocity boundary conditions rather than by directly linking them to deformation of the solid [2–10]. 
Because they are derived from the boundary conditions on the immersed body, we refer here to these IB methods as 
surface velocity-based IB methods. These methods produce surface stresses that are poor representations of the physical 
surface stresses. A subset of these also produce unphysical oscillations in time traces of surface force quantities such as 
the coefficients of lift and drag, since they enforce the boundary constraint approximately rather than explicitly [2–4]. Yang 
et al. [5] reduced the unphysical oscillations in these surface force quantities, but to our knowledge the inaccuracies in the 
surface stresses have not been addressed. This is likely due to the fact that the velocity field converges in spite of these 
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erroneous surface stresses, so surface velocity-based IB methods may be used without modification for problems where 
accurate knowledge of the surface stresses is not required.

However, correct information about surface stresses and forces is important in many applications, such as characterizing 
the performance of wings and aerodynamic bodies in unsteady flows, understanding and controlling flow separation around 
bluff bodies, and simulating fully coupled flow–structure-interaction (FSI) problems with deforming bodies. In this work, we 
characterize and remedy the spurious surface stresses and forces obtained by surface-velocity based IB methods.

It should be noted that there is a class of IB methods called “sharp-interface” methods, which includes ghost-cell [11], 
cut-cell [12], ghost-fluid [13], and immersed interface methods [14]. While spurious surface stress and force oscillations 
have been observed for a subset of these methods [15,16], their cause and remedy are different from what is presented in 
the current work [16]. A key distinction between this subset of sharp-interface methods and the methods considered here 
is the use of local flow reconstructions that obviate the need for a singular source term in the momentum equations.

We restrict our attention to methods that contain a singular source term in the momentum equations, and that compute 
surface stresses and forces using that term. We show that, for any choice of smeared delta function, the equation for the 
surface stresses is an integral equation of the first kind whose ill-posedness leads to an inaccurate representation of the 
high frequency components of the surface stresses. The error in these high frequency components was also observed by 
Kallemov et al. [10] for a six-point delta function. We demonstrate that there is an inverse relation between the smoothness 
of the smeared delta function and the amplitude of the high frequency components for the physically correct stress. Thus, 
when sufficiently smooth delta functions are selected, the high-frequency components that are erroneously amplified when 
solving the integral equation may be effectively filtered out of the solution without damaging the overall surface stress. By 
contrast, filtering out the incorrect high frequency components for insufficiently smooth smeared delta functions obscures 
important physical information.

We develop an efficient filtering technique for penalizing the erroneous high frequency stress components. The filtering 
procedure is performed as a post-processing step, so the convergence of the velocity field is unaffected. We demonstrate 
that, for all smeared delta functions considered, the filtered stresses are better approximations to the physical stresses than 
their unfiltered counterparts. However, because of the aforementioned inverse relationship between the smoothness of the 
smeared delta function and the magnitude of the high frequency components required to represent the physical stresses, this 
filtering procedure only provides convergent surface stresses when applied to sufficiently smooth smeared delta functions. 
These results are illustrated for several problems using the immersed boundary projection method (IBPM) of Colonius and 
Taira [8].

2. Demonstrating and resolving inaccurate computation of source terms for a model problem

The difficulty in solving integral equations of the first kind that arise from surface velocity-based IB methods is illustrated 
and remedied for a model problem in this section. Section 3 will demonstrate that the same type of integral equation arises 
from the Navier–Stokes equations. Thus, the same techniques developed here may be used to compute surface stresses and 
forces that arise in fluid flows.

The model problem considered is the Poisson equation for an unknown function ψ on a 2D square domain � = {x =
[x, y]T : |x|, |y| ≤ 1} with an unknown singular source term f that takes nonzero values on an immersed surface denoted 
by �:

∇2ψ(x) = −
∫
�

f (ξ(s))δ(x − ξ(s))ds

ψ(x) = ψ∂�(x), x ∈ ∂�∫
�

ψ(x)δ(x − ξ(s))dx = ψ�(ξ(s))

(1)

where s is a variable that parametrizes the IB (e.g., arc length), ξ (s) is the Lagrangian coordinate of a given point on the IB, 
∂� is the boundary of the domain �, ψ∂�(x) is a function of prescribed values for ψ on ∂�, and ψ�(ξ(s)) is a function 
defined on the immersed body. Note that the delta function δ(x − ξ(s)) is used to relate quantities between the immersed 
surface and the solution domain. An error analysis of numerical solutions to (1) has been performed in the case where f
is prescribed [17,18]. To mirror surface velocity-based IB methods, we leave f as an unknown that is solved by explicitly 
incorporating the third equation as a boundary constraint.

We take � to be a circle of radius 1/2 centered at x = 0, ψ∂�(x) = 1 − 1
2 log(2|x|), and ψ�(ξ) = 1. The exact solution to 

(1) is then

ψex(x) =
{

1, |x| ≤ 1
2

1 − 1
2 log(2|x|) |x| > 1

2

(2)

fex(ξ) = 1 (3)
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