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The growing need for uncertainty analysis of complex computational models has led 
to an expanding use of meta-models across engineering and sciences. The efficiency 
of meta-modeling techniques relies on their ability to provide statistically-equivalent 
analytical representations based on relatively few evaluations of the original model. 
Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-
models in a wide range of applications; the key idea thereof is to expand the model 
response onto a basis made of multivariate polynomials obtained as tensor products 
of appropriate univariate polynomials. The classical PCE approach nevertheless faces the 
“curse of dimensionality”, namely the exponential increase of the basis size with increasing 
input dimension. To address this limitation, the sparse PCE technique has been proposed, 
in which the expansion is carried out on only a few relevant basis terms that are 
automatically selected by a suitable algorithm. An alternative for developing meta-models 
with polynomial functions in high-dimensional problems is offered by the newly emerged 
low-rank approximations (LRA) approach. By exploiting the tensor–product structure of 
the multivariate basis, LRA can provide polynomial representations in highly compressed 
formats. Through extensive numerical investigations, we herein first shed light on issues 
relating to the construction of canonical LRA with a particular greedy algorithm involving 
a sequential updating of the polynomial coefficients along separate dimensions. Specifically, 
we examine the selection of optimal rank, stopping criteria in the updating of the 
polynomial coefficients and error estimation. In the sequel, we confront canonical LRA 
to sparse PCE in structural-mechanics and heat-conduction applications based on finite-
element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when 
the number of available model evaluations is small with respect to the input dimension, a 
situation that is often encountered in real-life problems. By introducing the conditional 
generalization error, we further demonstrate that canonical LRA tend to outperform 
sparse PCE in the prediction of extreme model responses, which is critical in reliability 
analysis.
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1. Introduction

It is nowadays common practice to study the behavior of physical and engineering systems through computer simulation. 
Proper analysis of the system response must account for the prevailing uncertainties in the system model and the under-
lying phenomena, which requires repeated simulations under varying scenarios for the input parameters. Modern advances 
in computer science combined with the improved understanding of physical laws are leading to computational models of 
increasing complexity. Uncertainty propagation through such models may become intractable in cases when a single simu-
lation is computationally demanding. A remedy is to substitute a complex model with a meta-model that possesses similar 
statistical properties, but has a simple functional form.

The focus of the present work is on meta-models that are built with polynomial functions due to the simplicity and 
versatility they offer. A popular class of meta-models thereof are the so-called polynomial chaos expansions (PCE) [1,2]. The 
key idea of PCE is to expand the model response onto an appropriate basis made of orthonormal multivariate polynomials, 
the latter obtained as tensor products of univariate polynomials in each of the input parameters. In non-intrusive approaches 
that are of interest herein, the coefficients of the expansion are evaluated in terms of the response of the original model 
at a set of points in the input space, called the experimental design [3–5]. Although PCE have proven powerful in a wide 
range of applications, they face limitations in cases with high-dimensional input. This is because the number of the basis 
terms, and thus of the unknown expansion coefficients, grows exponentially with the number of input parameters, which 
is commonly referred to as the “curse of dimensionality”. As shown in [6,7], the efficiency of the PCE approach can be 
significantly improved by using a sparse basis.

A promising alternative for developing meta-models with polynomial functions in high-dimensional spaces is provided 
by canonical decompositions. In canonical decompositions, also known as separated representations, a tensor is expressed 
as a sum of rank-one components. This type of representation constitutes a special case of tensor decompositions, which 
are typically used to compress information or extract a few relevant modes of a tensor; a survey on different types of 
tensor decompositions can be found in [8]. The original idea of canonical decomposition dates back to 1927 [9], but became 
popular in the second half of the 20th century after its introduction to psychometrics [10,11]. Since then, it has been used 
in a broad range of fields, including chemometrics [12,13], neuroscience [14,15], fluid mechanics [16,17], signal processing 
[18,19], image analysis [20,21] and data mining [22,23]. More recently, canonical decompositions are attracting an increasing 
interest in the field of uncertainty quantification [24–31].

By exploiting the tensor–product structure of the multivariate polynomial basis, canonical decompositions can provide 
equivalent to PCE representations in highly-compressed formats. It is emphasized that the number of parameters in canon-
ical decompositions grows only linearly with the input dimension, which, in cases of high-dimensional problems, results in 
a drastic reduction of the number of unknowns compared to PCE. Naturally, canonical decompositions with a few rank-one 
components are of interest, thus leading to the name low-rank approximations (LRA). We note that although the present 
study is constrained to the use of polynomial bases, different basis functions may be considered for the construction of LRA 
in a general case (see, e.g. [31]).

Recently proposed methods for building canonical LRA meta-models in a non-intrusive manner rely on the sequential 
updating of the polynomial coefficients along separate dimensions. The underlying algorithms require solving a series of 
minimization problems of small size, independent of the input dimension, which can be easily handled using standard tech-
niques. However, the LRA construction involves open questions that call for further investigations. In particular, stopping 
criteria in the sequential updating of the polynomial coefficients as well as criteria for selection of the optimal rank and 
polynomial degree are not yet well established. Considering a particular greedy algorithm for building canonical LRA meta-
models, we herein shed light on the aforementioned issues through extensive numerical investigations. In the sequel, we 
assess the comparative accuracy of canonical LRA and sparse PCE in applications involving finite-element models pertinent 
to structural mechanics and heat conduction. In these applications, sparse PCE are built with a state-of-art method, where a 
candidate basis is defined by means of a hyperbolic truncation scheme and the final sparse basis is determined using least 
angle regression. Comparisons between the meta-model errors are carried out for experimental designs of varying sizes 
drawn with Sobol sequences and Latin hypercube sampling.

The organization of the paper is as follows: In Section 2, we present the mathematical setup of non-intrusive meta-
modeling and describe corresponding error measures. Sections 3 and 4 respectively describe the sparse PCE and canonical 
LRA approaches. After investigating open questions in the construction of LRA in Section 5, we confront the two types of 
polynomial meta-models in Section 6. The paper concludes with a summary of the main findings and respective outlooks 
in Section 7.

2. Non-intrusive meta-modeling

2.1. Mathematical setup

We consider a physical or engineering system whose behavior is represented by a computational model M. Let X =
{X1, . . . , XM} and Y = {Y1, . . . , Y N} respectively denote the M-dimensional input vector and the N-dimensional response 
vector of the model. In order to account for the uncertainty in the input and the resulting uncertainty in the response, the 
elements of X and Y are described by random variables. For the sake of simplicity, we hereafter restrain our analysis to the 
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