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In this article we introduce a procedure, which allows to recover the potentially very 
good approximation properties of tensor-based model reduction procedures for the solution 
of partial differential equations in the presence of interfaces or strong gradients in the 
solution which are skewed with respect to the coordinate axes. The two key ideas are the 
location of the interface either by solving a lower-dimensional partial differential equation 
or by using data functions and the subsequent removal of the interface of the solution 
by choosing the determined interface as the lifting function of the Dirichlet boundary 
conditions. We demonstrate in numerical experiments for linear elliptic equations and the 
reduced basis-hierarchical model reduction approach that the proposed procedure locates 
the interface well and yields a significantly improved convergence behavior even in the 
case when we only consider an approximation of the interface.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fluid flow problems such as subsurface flow or blood flow problems often feature one distinguished (dominant) direction 
along which the essential dynamics develop. Therefore, tensor-based model reduction procedures such as the proper gen-
eralized decomposition (PGD) method, the hierarchical model reduction (HMR), and the reduced basis-hierarchical model 
reduction (RB-HMR) approach are well suited to compute an efficient and accurate approximation of the full(-dimensional) 
solution of the underlying partial differential equation (PDE). The common idea of such tensor-based model reduction 
procedures is to approximate the full solution by a truncated tensor product decomposition of the form pm(x, y) =∑m

l=1 p̄l(x)φl(y), where x, y lie in the computational domain � and are associated with different coordinate axes. The 
resulting model reduction approaches then differ from one another in the way the tensor products p̄l(x)φl(y), l = 1, . . . , m
are computed.

In the PGD method, introduced in [1,20], the tensor products are determined by iteratively solving the Euler–Lagrange 
equations associated with the considered problem. Alternatively, and in some cases equivalently, they may be computed as 
the minimizer of the variational functional corresponding to the considered PDE [19,5]. For an overview on the PGD method 
we refer to [6,7].

In contrast, the HMR approach, introduced in [31–33] and studied in a more general geometric setting in [12,26], consid-
ers a reduced space which is a combination of the full (Finite Element) solution space along the dominant (flow) direction 
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with a reduction space spanned by orthonormal basis functions {φl}m
l=1 in the so-called transverse direction. The function 

pm then solves a reduced problem obtained by a Galerkin projection onto the reduced space. While in [31–33,12,26] the 
reduction space is chosen a priori as the span of trigonometric or Legendre polynomials, a highly nonlinear approximation is 
employed for the construction in the RB-HMR approach [22,23,29,28]. To this end, first a parametrized problem in the trans-
verse direction is derived from the full dimensional problem, where the parameters reflect the influence from the unknown 
solution in the dominant direction. Then, reduced basis (RB) techniques [24,27] are applied for the efficient construction of 
the reduction space from snapshots of the parametrized transverse problem, exploiting their good approximation properties 
[10,17]. Thus, both in the construction of the solution manifold of the parametrized lower-dimensional problem and in the 
subsequent choice of the basis functions, information on the full solution is included to obtain a fast convergence of the 
reduced solution to the full one. In general, this yields an improved convergence rate compared to a priori chosen reduction 
spaces [23,28].

In spite of their mentioned good performance for say fluid flow problems, the approximation capacity of tensor-based 
model reduction procedures suffers considerably if the target solution exhibits an interface, i.e. a steep gradient or even a 
discontinuity, which is skewed with respect to the coordinate axes. Such behavior can often be encountered in fluid flow 
problems and particularly in subsurface flow, where, depending on the permeability of the soil, the saturation profile may 
form a skewed interface along the water table. This deteriorated convergence behavior is due to the fact that for a full 
approximation of the skewed interface the saturation or concentration profile in each point x in the dominant direction has 
to be included. In this article we introduce a new ansatz to tackle this problem. We propose to first approximately locate 
the interface by solving a lower-dimensional model or for simple model problems to infer the location of the interface from 
data functions. We assume that we have Dirichlet data available at the positions where the interface intersects the boundary 
of the considered computational domain. Thus we can then infer an approximation of the shape of the interface from the 
known Dirichlet boundary conditions. Otherwise an approximate shape of the interface can be computed in a preprocessing 
step. Finally, we prescribe the obtained saturation or concentration profile as the lifting function of the Dirichlet boundary 
conditions. In this way, we hope to remove the part of the full solution, which causes the bad convergence rate from the 
approximation process and therefore significantly improve the convergence behavior of the employed tensor-based model 
reduction approach. This will be demonstrated in numerical experiments.

Alternative to our approach, in [13] an interface or shock propagating in time is included in a time-dependent basis, 
which is spanned by the eigenfunctions of a linear Schrödinger operator and yields a numerical approximation of a Lax pair. 
In [18] a reduced basis in space is constructed via a proper orthogonal decomposition of snapshots and the evolution of the 
coefficients in time is computed by a suitable mapping and thus in an equation-free manner. In the case of parametrized 
PDEs it is well-known that convection dominated evolution equations where shocks may develop are difficult to tackle 
with RB methods [27,24] if linear spaces are employed. The reason for this is that similar to the setting of the skewed 
interface considered in this article the solution for nearly every time step has to be included in the basis, which deteriorates 
the approximation properties of the RB space. Therefore, in [21] a nonlinear approximation is applied by employing the 
method of freezing to decompose the target solution into a shape and group component. Then RB methods are applied to 
approximate the former while the group component say captures a drift of the interface. Also in [30] the authors propose 
to employ a nonlinear approximation strategy for the approximation of the solution of parametrized conservation laws in 
one space dimension. The approach in [30] consists of a partition of the domain induced from a suitable approximation of 
the shock curve such that the solution in each obtained subdomain is regular. The empirical interpolation method [2] — an 
interpolation strategy from the RB framework — is used to reconstruct the smooth parts of the solution in the subdomains.

The remainder of this article is organized as follows. In Section 2 we first describe our approach for the location of 
the interface using the example of subsurface flow and subsequently outline how the location of the interface can be 
inferred from data functions for linear advection–diffusion problems (Section 2.1). Afterwards, we demonstrate for linear 
advection–diffusion problems how the information on the location of the interface can be used to remove the interface from 
the model reduction procedure in Section 2.2. In Section 3 we exemplify this ansatz for the RB-HMR method and present an 
approach for the derivation of a lower-dimensional parametrized problem particularly suited for the presence of interfaces, 
which will be validated in Section 4. The capacity of the ansatz proposed in Section 2 to improve the convergence behavior 
is demonstrated in Section 4 for linear problems for the RB-HMR approach in several numerical experiments, including a 
test case, where we do not include the exact interface but only an approximation.

2. An ansatz for approximating skewed interfaces with tensor-based model reduction approaches

Let � ⊂ R2 denote the computational domain with Lipschitz boundary ∂�, �D ⊂ ∂� the Dirichlet boundary, and �N ⊂
∂� the Neumann boundary. We require that �D has positive Hausdorff measure. We assume that � can be considered as a 
two-dimensional fiber bundle:

� =
⋃

x∈�1D

{x} × ωx,

where �1D = (x0, x1) and ωx denotes the transverse fiber associated with x ∈ �1D . Note that the generalization to domains 
with a more complex geometry is straightforward [25]. We define for any x ∈ �1D the mapping ψ(·; x) : ωx → ω̂ between 
the fiber ωx associated with x ∈ �1D and a reference fiber ω̂ with ω̂ =]y0, y1[. Furthermore, we introduce the mapping 
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