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Phase field models are widely used to describe the two-phase system. The evolution of 
the phase field variables is usually driven by the gradient flow of a total free energy 
functional. The generalization of the approach to an N phase (N ≥ 3) system requires 
some extra consistency conditions on the free energy functional in order for the model 
to give physically relevant results. A projection approach is proposed for the derivation 
of a consistent free energy functional for the three-phase Cahn–Hilliard equations. The 
system is then coupled with the Navier–Stokes equations to describe the three-phase flow 
on solid surfaces with moving contact line. An energy stable scheme is developed for the 
three-phase flow system. The discrete energy law of the numerical scheme is proved which 
ensures the stability of the scheme. We also show some numerical results for the dynamics 
of triple junctions and four phase contact lines.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Phase field method has been widely used for numerical simulations of two-phase systems. The basic idea of the phase 
field method is to introduce an order parameter φ which takes two distinct values (+1 and −1, for instance) in each of 
the phases, with a smooth transition between both values in the zone around the interface, which is then diffuse with a 
finite width. The key advantage of the method is that the need to explicitly track the interface between different phases is 
removed. The phase field concept can be generalized to systems with three phases. In such three-phase system, the scalar 
variable φ is replaced by a vector c where the i-th element ci represents the volume fraction of i-th phase. These phases 
are linked through the constraint

c1 + c2 + c3 = 1. (1.1)

The evolution of the three-phase system is then driven by the gradient of a total free energy of the system subject to the 
constraint Eq. (1.1). If the free energy of the solid boundary is taken into account, the total free energy is then a sum of 
three terms: a bulk free energy which is usually taken as a multi-well potential describing the free energy density of the 
bulk of each phase, an interface energy term depending on the gradient of c and a surface energy on the solid boundary. 
Considering a three-phase system in domain � with a solid boundary ∂�, the total free energy functional can be written as
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F3(c) =
∫
�

F (c)dx +
∫
∂�

γ3(c)ds, where F (c) = F3(c) + G3(c,∇c).

Here, G3(c, ∇c) is the interfacial free energy density, and F3(c) and γ3(c) are the free energy densities in the bulk and on 
the solid boundary, respectively. The bulk free energy F3(c) should be a “triple-well” potential with minima at ci = 1 for all 
i ∈ {1, 2, 3}. It is natural to require that the three-phase free energy functional is consistent with that of two-phase flow, i.e., 
given i ∈ {1, 2, 3}, if ci = 0 and j �= i, k �= i, then 

F3(c j, ck,0) = F2(c j, ck), G3(c j, ck,0) = G2(c j, ck), γ3(c j, ck,0) = γ2(c j, ck),

where F2, G2 and γ2 are the corresponding free energy densities in two-phase flow on the solid surfaces. If consider the 
time evolution of the three-phase system driven by the minimization of the free energy functional, the dynamic equations 
are

∂ci

∂t
= −μi (1.2)

with a boundary condition on ∂�

∂ci

∂t
= −Li (1.3)

for i = 1, 2, 3, where μi and Li are defined by the variation of the total free energy functional F3(c), that is

δF3(c) =
∫
�

dx[μiδci] +
∫
∂�

ds[Liδci]. (1.4)

For (1.2) and (1.3), the following extra consistency conditions (P.1) and (P.2) are also needed in order for the system to give 
physically relevant results, see also [3,9],

P.1 When the phase i does not present in the mixture at the initial time, the phase should not appear during the time 
evolution of the system, i.e. given i ∈ [1, 3],

ci(0) = 0 =⇒ ci(t) = 0, ∀t ≥ 0. (1.5)

P.2 When there are only two phases in the model, the model of three-phase problem should always degenerate into the 
corresponding two-phase model.

Boyer et al. [3] shows that, for the three-phase problem, one must carefully choose the form of the bulk free energy 
so that the model can be well-posed and satisfy the algebraically and dynamically consistency conditions. However, their 
method is not easy to be generalized to general N-phase problems with N > 3 and to problems with general boundary 
conditions such as (1.3).

When the multiphase fluid dynamics is considered, the multiphase system is then coupled with the Navier–Stokes equa-
tions. For two-phase flow on solid boundary, the generalized Navier boundary condition is proposed for the moving contact 
line problem [12]. The two-phase flow model has been studied extensively [13,14] with many efficient numerical meth-
ods developed [6,8]. There are, however, very few results on the three-phase (or components) flow with solid boundary 
modeling and simulations [3,11,16,17].

In this paper, a new approach is developed to derive the consistent free energy functional for three-phase flow with 
moving contact line problem. The idea of the approach is to introduce a projection operator to enforce constraints Eq. (1.1), 
(P.1) and (P.2). We then employ the operator to derive the three-phase Cahn–Hilliard Navier–Stokes equations with gener-
alized Navier boundary condition. In addition, we develop an energy stable scheme for the coupled Cahn–Hilliard Navier 
Stokes equations with boundary conditions on solid surface. We also show that the scheme has the total energy decaying 
property which ensures the stability of the scheme. Numerical examples are carried out to verify capability of our model 
and numerical scheme.

The rest of this paper is organized as follows. In Section 2, the consistent bulk free energy functional and surface energy 
functional is derived from the projection approach. The energy functional is then incorporated into the Cahn–Hilliard Navier 
Stokes system for three-phase flow with the generalized Navier boundary condition for the motion of the contact line. In 
Section 3, the energy law for the model of three-phase flows on solid surfaces is proved. The numerical scheme is developed 
and discrete energy laws of the numerical scheme is discussed in Section 4. In Section 5, we give some numerical examples 
for dynamics of triple junctions and four phase contact lines (points). The discrete energy law and mass conservation law is 
verified through numerical examples. The paper concludes in Section 6.
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