
Journal of Computational Physics 319 (2016) 61–78

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Stabilization of numerical interchange in spectral-element 

magnetohydrodynamics

C.R. Sovinec

University of Wisconsin–Madison, Department of Engineering Physics, 1500 Engineering Drive, Madison, WI 53706-1609, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2015
Received in revised form 18 March 2016
Accepted 18 April 2016
Available online 10 May 2016

Keywords:
MHD computation
Spectral elements
Spectral filtering
Interchange instability

Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel 
to magnetic field are developed and tested for the purpose of suppressing unphysical 
interchange instability in magnetohydrodynamic simulations. The numerical instability 
arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, 
magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The 
auxiliary projections are motivated by physical field-line bending, and coercive responses 
to the projections are added to the flow-velocity equation. Their incomplete expansions 
are limited to the highest-order orthogonal polynomial in at least one coordinate of the 
spectral elements. Cylindrical eigenmode computations show that the projections induce 
convergence from the stable side with first-order ideal-MHD equations during h-refinement 
and p-refinement. Hyperbolic and parabolic projections and responses are compared, 
together with different methods for avoiding magnetic divergence error. The projections 
are also shown to be effective in linear and nonlinear time-dependent computations with 
the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical 
dissipation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) computations of magnetically confined plasma must address the numerical realization of 
localized interchange. In the absence of resistive dissipation, i.e. ideal MHD, the threshold for linear instability lies at a 
finite amount of “bad” magnetic curvature [1,2]. Bending of magnetic field-lines provides a restoring force, but it vanishes 
for resonant helical perturbations that align wavefronts with magnetic field (B) over entire surfaces of closed field-lines. 
Mathematically, the model is singular at these surfaces, and numerical representation of the resonant effect influences con-
vergence properties [3–6]. The challenge lies in the fact that responses depend on numerical behavior at the limit of spatial 
resolution, where convergent numerical methods usually have their greatest level of truncation error. Convergence on local 
interchange “from the unstable side” or “from above” means having too large a growth rate at finite resolution of a physical 
instability or producing numerical interchange for physically stable conditions. Lütjens and Luciani aptly recognized this as 
a problematic source of numerical noise in nonlinear simulations of long timescale dynamics [6]. This article describes a 
practical approach to addressing numerical interchange in simulations that use finite- and spectral-element representations 
of C0 continuity across element borders. It is conceptually related to spectral filtering of incompressible fluid simulations 

E-mail address: csovinec@cae.wisc.edu.

http://dx.doi.org/10.1016/j.jcp.2016.04.063
0021-9991/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2016.04.063
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:csovinec@cae.wisc.edu
http://dx.doi.org/10.1016/j.jcp.2016.04.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.04.063&domain=pdf


62 C.R. Sovinec / Journal of Computational Physics 319 (2016) 61–78

[7], to a penalty method for MHD eigenvalue computations [4], and to finite/spectral element stabilization techniques [for 
example, 8–11].

Our interest is nonlinear time-dependent simulation of nonideal MHD for magnetic confinement. This model admits 
viscosity that can stabilize localized interchange and facilitate computations. However, dissipation of dynamics perpendicular 
to magnetic field is weak in high-temperature plasma, and adding enough conventional viscosity to stabilize numerical 
interchange can distort dynamics. In principle, it is possible to address numerical interchange with sufficiently fine meshing 
for physical levels of viscosity. However, resonances that are susceptible to interchange can exist across the entire region 
of closed magnetic flux, and computing with globally fine resolution is computationally challenging and inefficient. The 
many resonances that occur in a region of bad magnetic curvature would also foil attempts to stabilize selected modes with 
spatially localized viscous dissipation.

The numerical representation of interchange was first studied in the context of ideal-MHD eigenvalue computation for 
static equilibria. The fundamental dependent fields are the components of the displacement vector, and perturbations in 
pressure and magnetic field are eliminated analytically prior to discretization. The resulting force operator is a second-order 
differential operator in space, and it is self-adjoint [12]. Finite-element methods (FEM) for this problem benefit from distinct 
expansions for the flux-normal, parallel, and “cross” components of the displacement vector, and integration by parts leaves 
only first-order derivatives of basis and test functions. To conform with analytical variational methods, only the radial 
component in cylindrical computations needs C0 continuity in the radial direction [3,13]. The other components may be 
discontinuous, and the degree of polynomials may be chosen to represent incompressible displacements without truncation 
error within elements. This allows the cylindrical computations to distinguish shear, parallel compression, and perpendicular 
compression at the scale of the mesh, thereby avoiding numerical spectral pollution. Like other applications of FEM, the 
conforming representation for low-order elements tends to be too stiff, and weakly growing internal modes in shaped cross 
sections are easily missed with slow convergence from the stable side [14]. Hybrid methods include auxiliary expansions for 
element-averaged dependent fields to improve the representation of bending and to achieve convergence from the unstable 
side [3]. Degtyarev and Medvedev analyzed the hybrid methods and refined them by introducing a numerical penalty term 
with a resolution-dependent coefficient that enhances bending-like energy at the finest scale of a mesh [4].

The early work on ideal-MHD eigenvalue computation provides a basis for time-dependent computation with weak 
dissipation, but the latter requires separate expansions for flow velocity, magnetic field, pressure (or temperature), and 
particle or mass density. When solving equations for the primitive physical fields, ideal effects, including the stabilizing 
bending response, are represented through first-order spatial derivatives in temporally first-order equations. Although the 
equation for the displacement vector in eigenvalue computation and the ideal part of time-dependent equations represent 
the same physical system, they are mathematically distinct and require different numerical approaches. The one taken by 
Lütjens and Luciani expands magnetic flux and the streamfunction for flow with polynomials of different degree [6]. Results 
described in Sect. 4 concur with their finding that this method achieves convergence on interchange from the stable side. 
However, it allows other numerical modes when using primitive-field expansions in our spectral-element computations.

The approach presented here takes advantage of the spectral-element representation, which allows bases of arbitrary 
polynomial degree [15,16]. We project flow divergence and parallel vorticity onto incomplete, discontinuous polynomial 
expansions that include only the highest-order orthogonal polynomial in at least one of the element coordinates. Mathe-
matically coercive responses to these projections are added to the evolution equations for components of flow velocity. This 
improves the numerical stability of the MHD computations, similar to other stabilization methods for FEM. Like spectral 
filtering [7], the auxiliary responses act on the shortest scales of the representation. In practice their effect on resolved 
scales is negligible.

The following section describes the equations and local interchange. Section 3 presents the new projection-based ap-
proach for stabilizing numerical interchange. Section 4 shows results from numerical eigenvalue computations for numerical 
systems with and without the new projections. Linear and nonlinear time-dependent results are presented in Sect. 5, fol-
lowed by discussion and conclusions in Sect. 6.

2. Equations and local interchange

The nonlinear non-ideal MHD system is the model of interest for applications to magnetized plasma, but their linearized 
form in the ideal limit is useful for investigating numerical interchange behavior. Thus, both are presented in the first part 
of this section. The second part describes the gravitational instability in a sheared-slab configuration as a relatively simple 
realization of MHD interchange. It highlights the importance of responses to parallel vorticity and compression, motivating 
the numerical approaches that are introduced in Sect. 3.

2.1. Nonlinear and linear MHD equations

The developments described in this paper have been applied to the NIMROD (Non-Ideal MHD with Rotation) code [17], 
which solves time-dependent nonlinear and linear problems of extended MHD. In normalized units, the most basic nonlinear 
single-fluid system solved by NIMROD is

ρ

(
∂

∂t
+ V · ∇

)
V = J × B − ∇ P − ∇ · �, (1)
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