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The integral equation for the flow velocity u(x; k) in the steady Couette flow derived from 
the linearized Bhatnagar–Gross–Krook–Welander kinetic equation is studied in detail both 
theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 
100.0. First, it is shown that the integral equation is a Fredholm equation of the second 
kind in which the norm of the compact integral operator is less than 1 on Lp for any 1 ≤
p ≤ ∞ and thus there exists a unique solution to the integral equation via the Neumann 
series. Second, it is shown that the solution is logarithmically singular at the endpoints. 
More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double 
power series of the form 

∑∞
n=0

∑∞
m=0 cn,mxn(x ln x)m about x = 0 on a small interval x ∈

(0, a) for some a > 0. And third, a high-order adaptive numerical algorithm is designed 
to compute the solution numerically to high precision. The solutions for the flow velocity 
u(x; k), the stress P xy(k), and the half-channel mass flow rate Q (k) are obtained in a wide 
range of the Knudsen number 0.003 ≤ k ≤ 100.0; and these solutions are accurate for at 
least twelve significant digits or better, thus they can be used as benchmark solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In small scale devices, such as microfluidics, gaseous flows may become highly nonequilibrium, hence it is required to 
solve kinetic equations (cf. reviews [1,2], monographs [3–8], and relevant references therein) or even molecular dynamics 
(cf. [9]). Kinetic equations evolve in phase space (x, ξ), where ξ is the particle velocity, thus numerical solutions of ki-
netic equations are far more challenging and demanding than numerical solutions of hydrodynamic equations in physical 
space x. In addition, the collision term in the Boltzmann equation is an integral operator in a five-dimensional space, eval-
uation of which requires considerable computational effort. To mitigate the difficulty due to the complexity of the collision 
integral, one often considers the linearized Boltzmann equation or simpler model kinetic equations, such as the Bhatnagar–
Gross–Krook–Welander (BGKW) equation [10,11]. However, the simplification of the collision term does not alleviate the 
challenging demand of computing the distribution function in phase space.
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There are several canonical flows which have been studied for a long time, including Kramers’ flow, Poiseuille flow, and 
Couette flow; and there has been a systematic and persistent effort to obtain accurate numerical solutions of the kinetic 
equations corresponding to these flows [12–28]. Accurate solutions of these canonical flows have been used as benchmarks 
to test numerical schemes for more general flows [22–25,28].

For the aforementioned canonical flows, the linearized BGKW equation with the Maxwell diffusive boundary conditions 
[29,4] leads to Fredholm integral equations of the second kind with weakly singular kernels, and it has been a continuous 
effort to obtain accurate numerical solutions of the integral equations for the canonical flows [22–25,28,30–32]. However, 
it appears that some advanced modern techniques developed in the last few decades for solving integral equations with 
singularities at the endpoints have yet to be fully utilized in the community of rarefied gas dynamics (RGD). Indeed, accu-
rately solving these integral equations requires at least two apparatuses: (a) high-order quadratures to evaluate the involved 
singular integrals and functions and (b) proper discretization schemes to capture the singularities of the solution at the 
endpoints. Currently, the popular approaches for solving these integral equations use the Meijer G-function to compute 
the singular kernels [25,28], apply smooth Gaussian quadrature to evaluate the singular integrals, and represent the solu-
tion with some global expansion of smooth functions or piecewise polynomials on equispaced subintervals. First, the use of 
Meijer G-function for the evaluation of the singular kernel function (e.g., the Abramowitz function in many cases) is very 
likely to suffer from catastrophic cancellation for large values of the argument, as observed previously [33]. Second, the 
direct application of a smooth Gaussian quadrature to evaluate the singular integrals either results in a very low accuracy 
or demands an excessively large number of nodes required for the quadrature. Third and finally, the representation of the 
solution by using globally smooth polynomial expansion or piecewise polynomials on uniform, equispaced subintervals makes 
it difficult to capture the singularities of the solution. Thus, the predominant methodologies currently employed in the RGD 
community fail to obtain high-precision benchmark solutions of these integral equations with a reasonable computational 
effort [33].

The shortcomings of the aforementioned approaches are especially evident and apparent in the case of obtaining high-
precision benchmark solutions of the linearized BGKW equation for canonical flows [22–25,28]. For example, Loyalka and 
Tompson [25] use the Nyström method with Gauss–Kronrod quadrature to solve the integral equation for Kramers’ problem. 
They are only able to obtain the flow velocity with a precision of about 7 digits even though the largest quadrature order is 
1312 and a precision of 60 digits is required for the arithmetic computation. More recently, Yap and Sader [28] use the same 
technique with Gauss–Legendre quadrature to study steady and oscillating Couette flows, and with a large linear system of 
size 12,8002 = 163,840,000 and the arithmetics with 30 digits, they are only able to obtain the velocity between 5 and 
8 significant digits for the Knudsen number k between 0.01 and 100.0, respectively. While requiring a significant compu-
tational effort in terms of both the multiple-precision arithmetics and large size of quadratures, these popular approaches 
[25,28] can only attain a precision far less than the IEEE 64 bit double-precision.

Perhaps the most accurate result for the integral equation for the steady Couette flow to date is obtained by Li et al. [32]
with the Chebyshev collocation method, in which the singular kernel function, i.e., the Abramowitz function, is approximated 
by its Chebyshev expansion [34], as opposed to the use of the Meijer G-function in the previous works [25,28]. By choosing 
a proper and accurate approximation for the singular kernel, the work of Li et al. [32] greatly improves the accuracy of 
the solution while significantly reduces the computational effort. However, the work of Li et al. [32] does not employ any 
advanced modern techniques for numerical solution of the integral equations with singularities at the endpoints, which is 
the task of the present work.

As mentioned previously, the Couette flow is one of the canonical flows which play an important role for understanding 
the transport phenomena in gaseous flows in micro-scales (cf., e.g., [6,9] and references therein). In particular, the Knudsen 
layer formed at a solid boundary is of great interest. In this paper, we will study the integral equation which is derived 
from the linearized BGKW equation for the steady Couette flow [3–8]:
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where the parameter k is the Knudsen number and Jn is the n-th order Abramowitz function defined by 

Jn(x) =
∞∫

0

tne−t2−x/tdt, n ≥ −1. (2)

It is easy to show that the kernel function J−1(|x|) has both absolute value and logarithmic singularities at x = 0, that is, 

J−1 (|x|) = φ−1(x) + g−1(x)|x| + h−1(x) ln |x|, (3)

where φ−1, g−1, and h−1 are functions admitting a power series representation about x = 0. Then, by its definition (1b), the 
function f (x) on the right-hand side of (1a) is logarithmically singular at both endpoints x = ±1/2.
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