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This paper introduces numerical time discretization methods which significantly improve 
the accuracy of the convexity-splitting approach of Eyre (1998) [7], while retaining the 
same numerical cost and stability properties.
A first order method is constructed by iteration of a semi-implicit method based upon 
decomposing the energy into convex and concave parts. A second order method is also 
presented based on backwards differentiation formulas. Several extrapolation procedures 
for iteration initialization are proposed. We show that, under broad circumstances, these 
methods have an energy decreasing property, leading to good numerical stability.
The new schemes are tested using two evolution equations commonly used in materials 
science: the Cahn–Hilliard equation and the phase field crystal equation. We find that our 
methods can increase accuracy by many orders of magnitude in comparison to the original 
convexity-splitting algorithm. In addition, the optimal methods require little or no iteration, 
making their computation cost similar to the original algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

High order parabolic equations which derive from gradient descent of an energy functional (“gradient flows”) are com-
monly encountered in the study of material microstructure evolution and related phase field models [1,2]. Two extensively 
studied models in this class are the Cahn–Hilliard (CH) equation [3]

ut = �(−ε2�u + u3 − u), (1)

and phase field crystal (PFC) equation [4]

ut = �((� + 1)2u − ru + u3). (2)

Numerical methods with explicit time discretization are impractical for these equations because of limitations imposed 
by numerical stability. This has motivated the development of a variety of implicit and semi-implicit numerical methods 
[5–11]. A simple and elegant semi-implicit approach was formulated by Eyre [7]. Although it was originally introduced for 
the Cahn–Hilliard equation, it has been successfully implemented in many different contexts [11–14]. Various improvements 
and extensions of the method have also been made [15–17].
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In the algorithm’s most basic form, an energy function F (u) is decomposed into convex and concave parts as F =
F+ + F− . For a gradient flow of the form ut = −∇ F (u), the method treats the convex part implicitly, and the concave part 
explicitly, leading to the formally first order method

un+1 − un

h
= −∇ F+(un+1) − ∇ F−(un), (3)

where un is an approximation to u(nh) and h is the timestep. For this scheme, it can be shown that the energy decreasing 
property holds in a discrete way: F (un+1) ≤ F (un). An algorithm with this property is said to be energetically stable. Under 
some circumstances, this notion of stability coincides with the usual idea of unconditional numerical stability.

The main advantage to the convexity splitting method is that ∇ F+ can often be chosen to be linear, and moreover 
I + h∇ F+ is often easy to invert. This means that (3) can be accomplished very efficiently, without the need for Newton-
iteration steps and various sorts of linear algebra typical of fully implicit methods. In addition, practical implementations in 
phase field modeling appears to produce qualitatively correct features, such as the development and propagation of inter-
faces. On the other hand, it has been widely observed that the convexity-splitting scheme can have large temporal errors [9,
18,19]. The purpose of this paper is to improve the accuracy of the convexity splitting approach while retaining all of its other benefits.

Our new methods fall into a broad class of semi-implicit algorithms for high order parabolic equations [9,20–22]. There 
have been several recent advances for these types of methods in the context of materials science. The approach proposed 
by Hu et al. [22] used finite differences and a multi-grid approach to solve the PFC equation. Gomez and Hughes [9]
introduced a second order accurate in time variational method for the CH equation, using mixed finite elements in space. 
Second order accurate algorithms have also been used for the PFC equation by Vignal et al. [21]. The work in [21] presented 
a computational framework that relies on the convex-concave splitting approach. Christlieb et al. [20] suggested that high 
accuracy can be achieved using fully implicit methods with a pseudo-spectral spatial discretization, employing Newton 
iterations and a conjugate gradient solver.

In this paper, we utilize the convexity splitting of the free energy as a basis for new algorithms, based upon various 
combinations of iteration, extrapolation, and higher order discretization. In section 2, we review the variational formulation 
of abstract gradient flow equations and explain stability of convexity splitting methods in this context. Iterative and higher 
order algorithms are introduced in section 3, which are shown to be energetically stable under broad circumstances. These 
methods are tested in section 4 for the Cahn–Hilliard and phase field crystal equations.

2. Generalized gradient flows and their variational characterization

Often gradient flows arise as steepest descent of a functional in a general function space whose geometry is given by an 
inner product. Suppose S is affine to a Hilbert space H , i.e.

S = {u|u = u0 + w, w ∈ H}.
Let 〈·, ·〉 be some inner product on that space (we remark that this does not have to correspond to the “natural” inner 
product of H). Given a smooth functional F (u) : S → R, the gradient flow of F with respect to S is a solution u(t) ∈ S ×[0, ∞)

of the weak equation

〈ut, w〉 = −(δF (u), w), w ∈ H . (4)

The right hand side denotes the directional derivative

(δF (u),ϕ) = lim
δ→0

F (u + δϕ) − F (u)

δ
,

which is assumed to always exist in what follows.
There is a variational principle associated with (4) which may be exploited. It is easy to show that (4) arises from 

minimization of a “Rayleigh” functional

R(w) = 1

2
〈w, w〉 + (δF (u), w). (5)

That is, if a unique critical point wc of R exists at each time t , then ut = wc . Informally, this means that a gradient flow 
seeks the direction of greatest energy decrease, subject to an energy dissipation penalty prescribed by the inner product.

In the context of PDEs, H is typically a Sobolev space such as H s(�) endowed with an inner product from a weaker 
space (e.g. Hq(�) with q < s). In the case S = L2(�) is equipped with its usual inner product, equation (4) is just∫

�

ut w dx = −
∫
�

δF (u) w dx, w ∈ L2(�), (6)

which leads equations of the form ut = −δF (u). In the materials science literature, this gradient flow is conventionally 
called “non-conserved dynamics”.
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