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Abstract

In this paper, a new numerical method for solving the distributed fractional
differential equations is presented. The method is based upon hybrid functions
approximation. The properties of hybrid functions consisting of block-pulse func-
tions and Bernoulli polynomials are presented. The Riemann-Liouville fractional
integral operator for hybrid functions is introduced. This operator is then utilized
to reduce the solution of the distributed fractional differential equations to a sys-
tem of algebraic equations. Illustrative examples are included to demonstrate the
validity and applicability of the technique.
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1 Introduction

Fractional differential equations (FDEs) are generalizations of ordinary differential equa-
tions to an arbitrary (noninteger) order. A history of the development of fractional
differential operators can be found in [1, 2].

FDEs have attracted considerable interest because of their ability to model complex
phenomena such as continuum and statistical mechanics [3], visco-elastic materials [4],
and solid mechanics [5]. To the best of our knowledge, two different approaches were per-
formed by using spectral methods for fractional ordinary differential equations (FODEs)
and fractional partial differential equations (FPDEs). In the first approach, the classical
orthogonal functions have been used as a trail function to find the approximate solu-
tion for FODEs and FPDEs, see for example [6–13]. In the second approach, the base

∗Corresponding author: razzaghi@math.msstate.edu



Download English Version:

https://daneshyari.com/en/article/6930187

Download Persian Version:

https://daneshyari.com/article/6930187

Daneshyari.com

https://daneshyari.com/en/article/6930187
https://daneshyari.com/article/6930187
https://daneshyari.com

