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The objective of this paper is the extension and application of a newly-developed Green’s 
function Monte Carlo (GFMC) algorithm to the estimation of the derivative of the solution 
of the one-dimensional (1D) Helmholtz equation subject to Neumann and mixed boundary 
conditions problems. The traditional GFMC approach for the solution of partial differential 
equations subject to these boundary conditions involves “reflecting boundaries” resulting 
in relatively large computational times. My work, inspired by the work of K.K. Sabelfeld is 
philosophically different in that there is no requirement for reflection at these boundaries. 
The underlying feature of this algorithm is the elimination of the use of reflecting 
boundaries through the use of novel Green’s functions that mimic the boundary conditions 
of the problem of interest. My past work has involved the application of this algorithm 
to the estimation of the solution of the 1D Laplace equation, the Helmholtz equation and 
the modified Helmholtz equation. In this work, this algorithm has been adapted to the 
estimation of the derivative of the solution which is a very important development. In the 
traditional approach involving reflection, to estimate the derivative at a certain number of 
points, one has to a priori estimate the solution at a larger number of points. In the case of 
a one-dimensional problem for instance, to obtain the derivative of the solution at a point, 
one has to obtain the solution at two points, one on each side of the point of interest. 
These points have to be close enough so that the validity of the first-order approximation 
for the derivative operator is justified and at the same time, the actual difference between 
the solutions at these two points has to be at least an order of magnitude higher than 
the statistical error in the estimation of the solution, thus requiring a significantly larger 
number of random-walks than that required for the estimation of the solution. In this 
new approach, identical amount of computational resources is needed irrespective of if 
we are trying to estimate the solution or the derivative. This becomes very significant in 
electromagnetic problems where the scalar/vector potential is the unknown in the PDE of 
interest, but the quantity of interest is the electric/magnetic field or in heat conduction 
problems where temperature of an object is the unknown variable in a PDE, but the 
quantity of interest is the spatial/temporal variation of the temperature. In this work, 
this algorithm is applied to the estimation of the derivative of the solution of the 1D 
Helmholtz equation which is the frequency domain version of both Maxwell’s equations 
and the heat conduction equation. As a result the algorithm is an important first step in 
the development of computationally efficient GFMC algorithms for Neumann and mixed 
boundary condition problems. The numerical results have been validated by an exact, 
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analytical solution and very good agreement has been observed. The long-term goal of this 
research is the application of this methodology to the numerical solution of the F region 
ionization problem in space plasma modeling.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We begin our discussion with the exposition of the fundamentals behind the Green’s function Monte Carlo (GFMC) 
solution [1] of differential equations. We consider a differential equation, with a differential operator L,

L
[
U (x)

] = f (x), (1)

where the solution U (x) is a function of the one-dimensional position vector x defined in the region a ≤ x ≤ b. The function 
f (x) is the forcing function. The Green’s functions for Eq. (1) are the solutions of the differential equation

L
[
G(x|x0)

] = δ(x − x0), (2)

subject to specified boundary conditions. We assume that the operator L is of the Sturm–Liouville [2] form:

L = ∇ · [p(x)∇] + q(x), (3)

where p(x) and q(x) are known functions of x. Using Green’s integral representation [2], the solution at a point x0 within 
the problem domain, U (x) can be written as

U (x0) =
b∫

a

f (x0)G(x|x0)dx +
[

p(x)u(x)
dG(x|x0)

dx

]b

a
−

[
p(x)G(x|x0)

dU (x)

dx

]b

a
. (4)

The first term on the right hand side of Eq. (4) represents the contribution from the forcing function. The second term 
represents the contribution of Dirichlet boundary conditions, while the third term represents the contribution of Neumann 
boundary conditions. In problems with inhomogeneous Dirichlet boundary conditions, homogeneous Dirichlet boundary 
conditions are imposed on the Green’s function and the Green’s integral representation from Eq. (4) reduces to

U (x0) =
b∫

a

f (x0)G(x|x0)dx0 +
[

p(x)u(x)
dG(x|x0)

dx

]b

a
. (5)

In problems with inhomogeneous Dirichlet boundary conditions, the random-walker finds a reward in each one of two 
boundary points, where a walk is terminated. The termination of the random walk becomes a problem for Neumann and 
mixed boundary condition problems where the solution is not known at all points of the domain boundary. In Monte Carlo 
literature [3], these boundary conditions are formulated as partially “reflecting” as the random-walker is either absorbed in 
the problem boundary or is “reflected” back into the problem domain. I will now explain this problem of reflection within 
the context of the 1D Laplace equation.

2. Reflection at Neumann boundaries

Consider the equation

d2U

dx2
= 0, (6)

where U is the dependent variable of interest defined in the problem domain 0 ≤ x ≤ L. The boundary conditions imposed 
on this problem are U (0) = α and U (L) = β . A traditional GFMC algorithm for this problem will be based on a Green’s 
function given by

d2G

dx2
= δ(x − x0), (7)

defined on a problem domain −h ≤ x ≤ h, with homogeneous Dirichlet boundary conditions G(−h|x0) = 0 and G(+h|x0) = 0. 
The solution to Eq. (7) in a zero-centered notation (i.e., x0 = 0) is given by

G(x|0) =

⎧⎪⎨
⎪⎩

1

2
(x − h), x ≥ 0

−1

2
(x + h), x ≤ 0

⎫⎪⎬
⎪⎭ . (8)
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