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Problems of interest in hydrogeology and hydrocarbon resources involve complex heteroge-
neous geological formations. Such domains are most accurately represented in reservoir 
simulations by unstructured computational grids. Finite element methods accurately 
describe flow on unstructured meshes with complex geometries, and their flexible 
formulation allows implementation on different grid types. In this work, we consider 
for the first time the challenging problem of fully compositional three-phase flow in 3D 
unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. 
We employ a mass conserving mixed hybrid finite element (MHFE) method to solve 
for the pressure and flux fields. The transport equations are approximated with a 
higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this 
approach outperforms a face-based implementation of the same polynomial order. These 
methods are well suited for heterogeneous and fractured reservoirs, because they provide 
globally continuous pressure and flux fields, while allowing for sharp discontinuities in 
compositions and saturations. The higher-order accuracy improves the modeling of strongly 
non-linear flow, such as gravitational and viscous fingering. We review the literature 
on unstructured reservoir simulation models, and present many examples that consider 
gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study 
convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen 
finite element methods for challenging multiphase flow problems in geometrically complex 
subsurface media.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Subsurface geological formations generally have complex geometries that require highly flexible meshing for accurate 
representation. Structured (or logically Cartesian) grids may not accurately describe many subsurface problems in hydroge-
ology and the recovery of hydrocarbon resources. They are also not well suited to model radial flow near wells, and results 
from commercial simulators may not converge in the near-well region [1].
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The most commonly used numerical method to model flow on structured grids is the finite difference (FD) approach, 
while finite volume (FV) methods are usually adopted for unstructured grids. In their lowest-order form, both assume 
element-wise constant scalar variables (such as saturations) and use a two-point flux approximation (TPFA) to compute 
vectors (fluxes) from (pressure) gradients between two points. It is well known that such lowest-order approximations suffer 
from excessive numerical dispersion, and grid sensitivity. The former can be reduced through ‘brute force’ by significantly 
refining the mesh, which is made more feasible by the development of massively parallelized simulators in the industry 
[2]. However, sufficient mesh refinement is often not feasible when modeling flow in field-scale hydrocarbon reservoirs 
or aquifers. Grid sensitivity cannot be resolved by mesh refinement. Specifically, it is well known that the TPFA may not 
converge unless the grid is K -orthogonal [3,4]. Recently, significant improvements have been made to the FV approach, 
for instance to accommodate the full permeability tensor [5–13] and fractures [14–16]. To improve FD flux computations 
on general grids and with tensor permeability, the multipoint flux approximation (MPFA) was introduced. In MPFA, fluxes 
are reconstructed from the pressures in multiple surrounding elements [17–21,6,22,23], similar to the stencil of a standard 
continuous Galerkin discretization. Several flavors of MPFA have been proposed since the original version [23,24,8,9,24–26]. 
MPFA has been compared to the Vertex Approximate Gradient scheme [27] and to BDM1 space under numerical quadrature 
[24,25].

The last category of numerical flow models rely on finite elements (FE). FE are the method of choice in many disciplines 
in science and engineering that involve unstructured grids. The FE methods that we adopt in this work are motivated by 
two essential physical properties of flow through porous media: 1) pressures and fluxes are continuous, even across layers 
and fractures, while 2) fluid properties are often discontinuous across phase boundaries, fractures, and layers.

In light of the latter realization, we adopt the discontinuous Galerkin (DG) method for the mass transport update. DG is 
strictly mass conserving at the element level. In higher-order DG, compositions or saturations can be updated at all vertices 
or faces and the values can be discontinuous across faces. This is particularly useful in fractured or layered reservoirs. In this 
work, we employ a multi-linear DG approximation as a compromise between higher-order convergence versus the number 
of phase-split computations that have to be carried out at each degree-of-freedom. Many flavors of DG have been analyzed 
in terms of error estimates and convergence properties, and it is hard to do justice to the full scope of this work (the 
following papers provide an overview of pioneering and recents efforts in the analysis of DG methods: [28–52]).

We use a mixed-hybrid finite element (MHFE) to satisfy the second aforementioned physical property: that both pres-
sure and flux fields are continuous everywhere. MHFE simultaneously and to the same order of accuracy solves for globally 
continuous pressure and flux fields [53,54,33,55–57]. The high accuracy in the velocity field in highly heterogeneous and/or 
anisotropic domains is the main attraction of the MHFE method. Computing the pressures on element faces is also con-
venient when modeling capillarity and fractured reservoirs. Unlike some FE methods, the MHFE-DG combination is strictly 
mass conserving at the element level.

A comparison between MFE and MPFA was presented in Matringe et al. [24] for single-phase incompressible flow without 
gravity. Hoteit and Firoozabadi [58] and [59] compared MHFE-DG to the traditional TPFA-FD approach in a commercial 
simulator, and to an equal-order MUSCL FV scheme, respectively. Both MPFA [60] and MHFE [61] flux approximations have 
been presented on unstructured 3D grids for two-phase incompressible flow. However, to the best of our knowledge, neither 
method has been investigated for unstructured 3D grids and (EOS-based) compositional and compressible multiphase flow 
with gravity, which is the subject of this work. We emphasize that the latter problem is governed by a different set of 
equations which involve the highly non-linear total compressibility and total partial molar volumes of multicomponent 
multiphase mixtures.

Based on this discussion, we adopt an implicit-pressure–explicit-composition (IMPEC) scheme with a higher-order DG 
explicit mass transport update and a MHFE implicit pressure and flux update. This MHFE-DG scheme was explored for 
single-phase compressible compositional flow in fractured media in Hoteit and Firoozabadi [58], and generalized to two-
phase compositional flow in homogeneous [62] and fractured domains [63], all on structured 2D grids; and to two-phase 
immiscible and incompressible flow with capillarity on 3D unstructured grids in [64]. More recently, MHFE-DG has been 
applied to problems of increasing complexity and non-linearity: three-phase flow with an immiscible aqueous phase [65], 
three fully compositional multicomponent hydrocarbon phases or two hydrocarbon phases and a compositional aqueous 
phase modeled by the cubic-plus-association (CPA) equation-of-state (EOS) [66,67]. Fickian diffusion, three-phase capillarity, 
and discrete fractures were modeled in 3D in Moortgat et al. [68], Moortgat and Firoozabadi [69,70].

Our past studies of compositional multiphase flow have been restricted to structured grids. The objective of this work 
is to unleash the full potential of our FE methods by moving to unstructured grids and allowing for all types of commonly 
used elements: triangles and quadrilaterals in 2D, and hexahedra, prisms, and tetrahedra in 3D. One other improvement is 
that we consider vertex-based DG discretizations rather than face-based (which requires a different slope-limiter [53,64]). 
The superiority of this approach is demonstrated in one of the numerical examples.

We briefly summarize our mathematical fractional flow formulation in Section 2. In Section 3 we discuss the MHFE-DG 
implementation on unstructured grids. The numerical experiments in Section 4 are a main focus of this work. First, we 
model the recovery of hydrocarbon energy resources by three important processes (gravity depletion, water flooding, and 
compositional CO2 injection) from a 3D reservoir discretized by 5 different structured and unstructured hexahedral, pris-
matic and tetrahedra grids. This example shows that we obtain the same results irrespective of grid-types for a wide range 
of multiphase processes that exhibit counter-current flow and phase behavior. Other sets of examples investigate grid sensi-
tivity, anisotropic domains, and the convergence properties of the MHFE-DG method on structured and unstructured grids. 
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