
Journal of Computational Physics 314 (2016) 1–13

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A biorthogonal decomposition for the identification and 

simulation of non-stationary and non-Gaussian random fields

I. Zentner a, G. Ferré b,∗, F. Poirion c, M. Benoit d

a IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
b CERMICS – Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France
c Department of Structural Dynamics and Aeroelasticity, ONERA, BP 72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex, France
d Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 
49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2015
Received in revised form 26 February 2016
Accepted 29 February 2016
Available online 4 March 2016

Keywords:
Random fields
Non-Gaussian
Non-stationary
Bi-orthogonal decomposition
Simulation
Karhunen–Loève
Earthquake
Sea state

In this paper, a new method for the identification and simulation of non-Gaussian and 
non-stationary stochastic fields given a database is proposed. It is based on two successive 
biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The 
proposed double expansion allows to build the model even in the case of large-size 
problems by separating the time, space and random parts of the field. A Gaussian kernel 
estimator is used to simulate the high dimensional set of random variables appearing 
in the decomposition. The capability of the method to reproduce the non-stationary and 
non-Gaussian features of random phenomena is illustrated by applications to earthquakes 
(seismic ground motion) and sea states (wave heights).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Natural hazards have to be accounted for when assessing the reliability of engineering structures such as dams, power 
plants, off-shore platforms, tunnels or bridges. Most of these phenomena, such as wind, earthquakes or sea waves, cannot 
be fully addressed through deterministic methods because of their inherent variability. As a consequence, it is a challenge 
to construct accurate and efficient stochastic models from data able to correctly reproduce their random features. However, 
the modelling of a non-stationary and non-Gaussian process is a difficult task, since it is represented through the time-
dependent uncountable family of its marginal distributions. The task is even harder for stochastic fields [16,36], where the 
variables are multi-dimensional (e.g. time and space). This is why several authors have tackled part of this problem by de-
veloping methods dedicated to non-Gaussian but stationary [10,29,26,12] or to non-stationary but Gaussian processes [24]. 
In particular, a great number of methods proposed in the literature rely on the construction of a power spectral density 
to represent a Gaussian process or field, the simulation being realized using the spectral representation theorem. In this 
case, non-stationarity can be introduced through an evolutionary power spectral density [28,39]. This is why this approach 
is very popular and used in many engineering applications.
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In order to treat more general non-Gaussian processes in the framework of spectral representation, some authors propose 
to use a translation process [12,32,6]. This proved to be efficient also in strongly non-Gaussian cases but this approach is 
limited to the stationary case (although it has been extended in recent papers to the non-stationary case [31,17]). Moreover, 
the distribution of the random process has to be known which is not true in general. In consequence, these methods are 
not always adapted for addressing the simulation of a field given a database of realizations. Random phenomena generally 
feature a non-Gaussian, non-homogeneous and non-stationary behaviour and not only one or the other. This has been 
shown in many areas, such as oceanography [19,20], seismology [13,41] or wind engineering [21,24].

The Karhunen–Loève (KL) expansion is probably the most general approach to represent a non-Gaussian and non-
stationary process [15,11,35,18,14,9,23,22]. In [41,25], the KL expansion is used to identify and simulate non-Gaussian and 
non-stationary stochastic processes from experimental data. In contrast to the Gaussian case, the random variables appear-
ing in the decomposition are not Gaussian nor independent in the general case, but still uncorrelated. Their simulation, as 
detailed in [25], is realized through a kernel density estimator that takes into account the joint probability density of the 
whole random vector. In this paper we extend these works to the case of stochastic spatio–temporal fields. The proposed 
approach is closely related to the general framework of biorthogonal decomposition (BOD) introduced by Aubry et al. [1,2]
for spatio–temporal signals. This approach consists in a proper orthogonal decomposition (POD) for spatio–temporal analy-
sis, which is popular for the study of turbulence [34] and has been extended to stochastic fields by Venturi [37]. However, 
the direct computation of the multi-dimensional Karhunen–Loève expansion is generally not feasible due to its numerical 
cost induced by the numerical resolution of a Fredholm integral equation that corresponds to a high dimensional eigenvalue 
problem [27,5].

Based on these considerations, we propose a new general decomposition that allows to construct a multi-dimensional 
KL expansion even for reasonably large problems. It requires very few assumptions on the modelled field and has the 
advantage that the non-stationary and non-Gaussian features of the data are well reproduced, along with other important 
characteristics such as its spatial coherency. As it will be shown, its implementation is straightforward, and its simulation is 
fast so that it is suitable to use in a Monte Carlo method for example. The paper is organized as follows: first, we present 
the construction of the model and discuss some practical aspects of its implementation. Then, we present applications on a 
realistic earthquake database and on wave data from fluid mechanics simulations.

2. A double spectral decomposition

In this Section, the theoretical framework of our approach is presented. The method is based on a double decomposition 
of a second order stochastic field X(t, x) given a database of n independent realizations. We construct the operators that 
enable to exhibit appropriate basis functions and allow to perform a second decomposition in a natural way. We next 
discuss some numerical aspects of the construction of the model and its simulation. Moreover, it is shown in Appendix A
that the proposed model, when built on a finite number of records n, converges almost surely to the random field X(t, x)
as n → +∞.

2.1. Theoretical framework

Let D be a bounded subset of R and B a bounded subset of Rd , where d ∈ N
∗ is the space dimension. We consider a 

zero-mean second order field X(t, x; ω) defined on a complete probability space (�, A, P ) and almost surely continuous, 
i.e. for almost all ω in �, X(·, · ; ω) ∈ C0(D ×B, R).

The first idea that one may have is to discretize in space and time and to perform a Karhunen–Loève expansion, that 
is to compute the full auto-correlation R(t, t′; x, x′) = E 

(
X(t, x)X(t′, x′)

)
and to solve the associated eigenvalue problem to 

obtain the classical Karhunen–Loève decomposition [15,41,25]:

X(t, x) =
∑
k≥1

√
λkφk(t, x)ξk, (1)

where (λk)k≥1 are non-negative real numbers and (ξk)k≥1 are real random variables. The main drawback of this approach 
is the size of the eigenvalue problem to be solved. Indeed, with Nt time steps and Nx points in each spatial direction, the 
discretized field may be viewed as the following discretized process Z =

(
X(ti, x1)

Nt
i=1, . . . , X(ti, xNx )

Nt
i=1

)
. The size of the 

eigenvalue problem to be solved is then Nt × Nd
x , which is not treatable in most cases.

The key idea to overcome this problem is to use the isomorphism between L2(D × B × �) and L2(D) ⊗ L2(B × �)

through the biorthogonal decomposition, as proposed in [1,37], and then to compute a second similar decomposition on 
L2(B × �): we first isolate the temporal part of the field, and then separate the spatial and the random parts.

Let us begin with the first decomposition. Let H1 = L2(D) and H2 = L2(B × �), with the following inner products:{
∀φ1, φ2 ∈ H1 , (φ1, φ2)H1 = ∫

D φ1(t)φ2(t) dt,

∀ v1, v2 ∈ H2 , (v1, v2)H2 = ∫
B E (v1(x)v2(x)) dx,

where we omitted the dependency of v1, v2 on the random event ω. In order to perform a first decomposition, we define 
U : H1 → H2,
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