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We propose an efficient monolithic numerical procedure based on a projection method 
for solving natural convection problems. In the present monolithic method, the buoyancy, 
linear diffusion, and nonlinear convection terms are implicitly advanced by applying the 
Crank–Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure 
in solving the monolithic discretized system, we use a linearization of the nonlinear 
convection terms and approximate block lower–upper (LU) decompositions along with 
approximate factorization. Numerical simulations demonstrate that the proposed method 
is more stable and computationally efficient than other semi-implicit methods, preserving 
temporal second-order accuracy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the decades, the natural convection phenomenon has received considerable attention [1–9] because of a variety of 
real-world applications, such as mantle convection, processor cooling device, indoor ventilation, and solar convection zone. 
Since a typical Rayleigh number (Ra) is extremely large and ranges from 107 to 1024 depending on problem scales [1], it 
is important to investigate time-dependent dynamics in natural convection, relying on a strong coupling between incom-
pressible flows and heat transfers. This coupling is related to the fact that the thermo-fluid flow is driven by a buoyancy 
force depending on temperature distribution while the temperature is convected by the background fluid flow. De Vhal 
Davis [2] numerically solved the natural convection problems based on stream function–vorticity formulations and pro-
vided numerical solutions for Ra ranging from 103 to 106 by using forward Euler discretization in time and second-order 
central difference in space. Quéré [4] obtained numerical solutions for Ra up to 108 with a pseudo-spectral Chebyshev algo-
rithm and a temporally second-order advancement approach that combines the second-order backward difference formula 
for the linear diffusion terms with the Adams–Bashforth scheme for the buoyancy and nonlinear convection terms. Arm-
field et al. [6] investigated natural convection problems using a projection method that has been proven to be effective and 
widely used for incompressible fluid problems. This projection method is based on a semi-implicit discretization in time, 
in which the buoyancy and nonlinear convection terms are explicitly treated by applying the Adams–Bashforth scheme, 
and the linear diffusion terms are implicitly treated by applying the Crank–Nicolson scheme. The explicit treatments of the 
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buoyancy and nonlinear convection terms allow a numerical decoupling between the momentum and energy equations [2,
4,6], which leads to a severe restriction on the computational time step due to numerical instability.

Recently, in order to mitigate the time step restriction of the stability requirement, several researchers developed more 
stable and robust methods based on iterative monolithic procedures [7–9] for solving time-dependent natural convection 
problems. Zhang et al. [8] established two monolithic nonlinear projection-based numerical schemes with the backward 
Euler and Crank–Nicolson schemes for temporal discretization and stabilized mixed finite element spatial discretization, 
respectively. Deteix et al. [9] proposed a coupled prediction scheme based on a fixed-point iterative procedure in accordance 
with a projection method, whereas the Crank–Nicolson scheme is used for all temporal discretizations. As expected, these 
monolithic methods [8,9] admit a fairly large computational time step for obtaining stable numerical solutions. However, 
they require a time-consuming iterative procedure for solving coupled nonlinear discrete systems.

Inspired by the work of Kim et al. [10], who developed a non-iterative implicit projection scheme for solving incompress-
ible Navier–Stokes equations, we extend this idea to natural convection problems. In this short note we propose a decoupled 
monolithic projection method (DMPM), preserving a temporal second-order accuracy. All terms in the momentum and en-
ergy equations are implicitly discretized, based on the Crank–Nicolson scheme along with linearization treatments for the 
nonlinear convection terms. We use approximate block LU decompositions of the coupled global operator matrix in the lin-
ear discretized system to obtain decoupled linear subsystems. All of the above treatments lead to a non-iterative monolithic 
procedure in the sense that momentum and energy equations are solved only once per time step, while other previously 
proposed monolithic schemes [7–9] for natural convection problems are mostly based on iterative approaches. The present 
DMPM, although it requires solving the Poisson equation twice per time step, allows a much larger computational time step 
than other semi-implicit methods, and thus saves significant computation time. Validation and performance of the proposed 
scheme are compared against the scheme that treats the nonlinear convection terms explicitly.

2. Construction of the DMPM

Under the Boussinesq approximation, governing equations for a three-dimensional (3D) natural convection flow can be 
written as

∂u

∂t
+ u · ∇u = −∇p + Pr∇2u + Fθ, (1)

∇ · u = 0, (2)
∂θ

∂t
+ u · ∇θ = ∇2θ, (3)

where u = (u1, u2, u3)
T , p, θ , and Fθ = (0, 0, PrRa θ)T are the velocity vector, pressure, temperature, and buoyancy force 

vector, respectively. In the equations above, the following non-dimensionalization is employed:

xi = x̃i

L
, ui = ũi

α/L
, t = t̃

L2/α
, p = p̃

ρα2/L2
, θ = θ̃ − θc

θh − θc
, Pr = ν

α
, Ra = gβ(θh − θc)L3

να
,

where L, θh , θc , α, β , ν , ρ , and g represent the characteristic length, temperature of the hot wall, temperature of the 
cold wall, thermal diffusivity, thermal expansion coefficient, kinematic viscosity, fluid density, and gravitational acceleration, 
respectively, and the symbol ˜ indicates the dimensional variable.

Using a method similar to the basic rationale of the discretizations in Kim et al. [10], the governing equations in 
Eqs. (1)–(3) are discretized by using the Crank–Nicolson scheme for the buoyancy, nonlinear convection, and linear dif-
fusion terms in time:
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where G , L, and D represent discrete gradient, Laplacian, and divergence operators, respectively. The discrete spatial op-
erators are evaluated using the second-order central difference scheme on a staggered grid. Here, �t is the time step, and 
the superscript n denotes the nth time level. Note that the boundary conditions of velocities have been incorporated into 
mbcn+1/2 and cbcn+1 [10], while ebcn+1/2 contains the boundary conditions of both velocities and temperature. Moreover, 
preserving temporal second-order accuracy, the nonlinear convection terms in Eqs. (4) and (6) are linearized as
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