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This paper concerns the cell-boundary error present in multiscale algorithms for elliptic 
homogenization problems. Typical multiscale methods have two essential components: 
a macro and a micro model. The micro model is used to upscale parameter values which 
are missing in the macro model. To solve the micro model, boundary conditions are 
required on the boundary of the microscopic domain. Imposing a naive boundary condition 
leads to O (ε/η) error in the computation, where ε is the size of the microscopic variations 
in the media and η is the size of the micro-domain. The removal of this error in modern 
multiscale algorithms still remains an important open problem. In this paper, we present a 
time-dependent approach which is general in terms of dimension. We provide a theorem 
which shows that we have arbitrarily high order convergence rates in terms of ε/η in 
the periodic setting. Additionally, we present numerical evidence showing that the method 
improves the O (ε/η) error to O (ε) in general non-periodic media.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper, we are interested in developing a multiscale method for the numerical homogenization of multi-
scale elliptic PDEs in divergence form:

−∇ · (Aε(x)∇uε(x)
) = f (x) in �,

uε(x) = 0 on ∂�, (1)

where � is an open bounded set in Rd with |�| = O (1), ε � 1 and Aε is a symmetric, uniformly elliptic and bounded, 
matrix function in Rd×d such that for every ζ ∈R

d

c1|ζ |2 ≤ sup
x∈�

ζ T Aε(x)ζ ≤ c2|ζ |2. (2)

The multiscale method does not assume any knowledge about the exact form of Aε(x). However, for the sake of com-
parison with known analytical results, the numerical examples and theoretical claims in this paper are given mainly in two 
settings: (a) for periodic media where Aε(x) = A(x/ε) and A is a periodic matrix function in the d-dimensional unit cube 
Y := (0, 1]d , and (b) for locally-periodic media where Aε(x) = A(x, x/ε) and A(x, ·) is Y -periodic and Aij ∈ C∞(� × Y ). The 
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smoothness assumptions are only to simplify the analysis and the method performs equally well under weaker assumptions, 
e.g. ∂k

x Aij ∈ C(�; L∞(Y )) at least for all k ≤ 2.
The term numerical homogenization is used to mean approximating the homogenized solutions of multiscale PDEs 

without resolving the small scales over the entire domain. Equation (1) models, for instance, steady heat conduction in 
heterogeneous media, where ε stands for the length-scale of the microscopic variations in the media. A direct numerical 
simulation of (1) leads to O (ε−d) degrees of freedom which can not be handled even by the best available computers if ε
is very small. The aim of homogenization is to describe the macroscopic behavior of the heterogeneous system (1). The idea 
behind homogenization theory is to mix the heterogeneities of the media infinitely to obtain a homogeneous system which 
is no more dependent on ε. Traditional numerical techniques will then be amenable for solving the resulting homogenized 
system.

From a mathematical point of view, the homogenization of equation (1), for purely periodic or a more realistic locally 
periodic coefficients is well-known, see e.g. [1–3]. In the periodic setting, as ε → 0, the solution to (1) tends to the homog-
enized solution u0(x) which satisfies

−∇ ·
(

A0∇u0(x)
)

= f (x) in �,

u0(x) = 0 on ∂�. (3)

Here the effective conductivity A0 is a constant matrix given by

A0
i j =

∫
Y

(
Aij(y) +

d∑
k=1

Aik∇ykχ j(y)

)
d y, (4)

where the cell solutions χ = {χi}d
i=1 are Y -periodic functions that solve the following periodic problems:

−∇ · (A(y)∇χi(y)) = ∇ · A(y)ei in Y ,

χi(y) is Y -periodic,
∫
Y

χi(s) ds = 0, (5)

where {ei}d
i=1 are the canonical basis vectors in Rd . The above formula is valid for periodic and, with a slight modification, 

for locally-periodic media. In more general settings, on the other hand, finding the limiting behavior of (1) is difficult and 
often impossible through existing theory of homogenization.

Numerical homogenization is indispensible in cases when homogenization theory is not adequate for finding the effective 
parameters of the media. From a numerical homogenization point of view, the focus is to develop computationally cheap 
methods which are potentially applicable to general settings, where the coefficient Aε(x) is allowed to have more general 
oscillations/variations in fast and slow scales. Keeping the generality of the main physical model (1) in mind, it is important 
then to develop a method which does not assume any knowledge about the form of the coefficient Aε(x), and at the same 
time performs optimally when applied to periodic and locally-periodic media.

1.1. The heterogeneous multiscale methods

E and Engquist [4], proposed the Heterogeneous Multiscale Methods (HMM) framework as a general methodology for 
capturing the global/average behavior of multiscale and possibly multi-physics problems. HMM is often very useful when 
we have a full description of the microscopic model. The idea is to avoid resolving the small scale details all over the 
domain, at the expense of targeting only an average behavior of the system. Multiscale PDEs such as (1) is within the 
application areas of HMM. In a typical HMM-based multiscale method, one starts by assuming a macroscopic model with 
some unknown data. The macroscopic model is discretized through standard finite difference (FD) or finite element methods 
(FEM) on a coarse mesh. Therefore, one needs the missing data on discrete points of the macro grid. These unknown data 
have local origin, which in turn is extracted from microscopic simulations performed over boxes of size η = O (ε), where 
ε represents the size of the small scale in the problem. Already here, we see that HMM exploits the scale separation 
featured in the main problem (1). In other words, since ε � 1, we can set η = O (ε) and therefore the computational 
cost of the micro simulations will not increase by decreasing ε. It is important to note that the microscopic simulations 
should be consistent with the current macroscopic data. This is achieved by restricting the microscopic simulations by the 
coarse-scale information. The overall computational cost of this HMM-based algorithm will then be NCmicro , where N is the 
number of macro grid points and Cmicro is the cost of performing a single micro simulation, which can be made essentially 
independent of ε by using high order methods, cf. [5]. For other approaches to decrease the computational burden in linear 
and quasi-linear elliptic multiscale PDEs see e.g. [6–8].

Now assume that � = (0, 1)d . The macro model for a standard HMM-type algorithm for problem (1) is

Macro problem:
−∇ · F (x,∇U ) = f (x) in �

U = 0 on ∂�.
(6)
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