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We report development of a high-order compact flux reconstruction method for solving 
unsteady incompressible flow on unstructured grids with implicit dual time stepping. The 
method falls under the class of methods now referred to as flux reconstruction/correction 
procedure via reconstruction. The governing equations employ Chorin’s classic artificial 
compressibility formulation with dual time stepping to solve unsteady flow problems. 
An implicit non-linear lower–upper symmetric Gauss–Seidel scheme with backward Euler 
discretization is used to efficiently march the solution in pseudo time, while a second-order 
backward Euler discretization is used to march in physical time. We verify and validate 
implementation of the high-order method coupled with our implicit time stepping scheme 
using both steady and unsteady incompressible flow problems. The current implicit time 
stepping scheme is proven effective in satisfying the divergence-free constraint on the 
velocity field in the artificial compressibility formulation within the context of the high-
order flux reconstruction method. This compact high-order method is very suitable for 
parallel computing and can easily be extended to moving and deforming grids.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In computational fluid dynamics, unstructured high-order methods, i.e. those considered 3rd order and above, are useful 
for the study of unsteady vortex dominated viscous flows in complex geometries. These methods can provide high accu-
racy for similar cost as low-order methods [1]. Furthermore, solution acceleration can be achieved with p-adaptivity and 
p-multigrid methods. However, high-order methods are less robust and more complicated to implement than low-order 
methods, especially when treating irregular geometries.

Four popular methods have been developed to address the need for high-order accuracy – discontinuous Galerkin (DG), 
spectral difference (SD), spectral volume (SV) and flux reconstruction/correction procedure via reconstruction (FR/CPR). Dis-
continuous Galerkin was initially developed for the neutron transport equation by Reed and Hill [2]. The staggered grid 
spectral method was initially presented by Kopriva [3] and was modified and called spectral difference method by Liu, Vi-
nokur and Wang [4]. The spectral volume method was introduced by Wang, Zhang and Liu [5], where each element is split 
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into multiple control volumes. Flux reconstruction was initially developed by Huynh [6,7] and has a close connection to 
lifting collocation penalty by Wang and Gao [8] (LCP). Consequently, those authors coined the name correction procedure 
via reconstruction. Further development was made on energy stable flux reconstruction schemes by Vincent, Castonguay 
and Jameson [9] also known as Vincent–Castonguay–Jameson–Huynh (VCJH) schemes. The FR/CPR methods represent sig-
nificant development because they have the ability to recover DG, SD and SV for linear problems. Furthermore, they are 
attractive because of the fact that no surface or volume integrals are required. Also, solution and flux points are arranged in 
a staggered fashion in SD, while flux points only lie along element interfaces in FR/CPR. As such, the latter method does not 
require extra flux computations at locations other than interior solution points. Using this fact, Liang, Cox and Plesniak [10]
have shown improved computational efficiency of FR/CPR over SD for quadrilateral elements. For a comprehensive review 
of these methods, see Huynh, Wang and Vincent [11] and Wang [12].

With the development of high-order unstructured methods comes the need to achieve faster convergence, especially for 
solving large-scale problems using parallel computers. This demand motivates the development of time stepping techniques 
for which the Courant–Friedrichs–Lewy (CFL) condition is less restrictive, which is hardly the case when explicit (e.g. multi-
stage Runge–Kutta) schemes are combined with high-order methods and dual time stepping. In this paper, we present an 
implicit scheme that overcomes the time step restriction associated with explicit schemes used for solving the unsteady in-
compressible Navier–Stokes equations. Work done to improve convergence of unsteady incompressible flow can be seen in 
Liang, Chan and Jameson [13], whereby they use a spectral difference method and Chorin’s original artificial compressibility 
formulation (AC) [14] as well as a p-multigrid method to accelerate the convergence rate of pseudo time stepping for a par-
ticular physical time step. However, the p-multigrid method marginally improves the stiffness introduced by the artificial 
compressibility approach, especially for flows that require high aspect ratio elements near solid walls. As computers become 
equipped with larger RAM, implicit time stepping schemes are seen as effective drivers to overcome this stiffness. With 
these implicit schemes much larger time steps can be taken in comparison to explicit schemes, delivering the potential to 
improve the rate of convergence significantly. Application of the DG method to the incompressible Navier–Stokes equations 
was performed by Bassi et al. [15], where artificial compressibility was introduced only at the interface flux level. Shahbazi, 
Fischer and Ethier [16] and Nguyen, Peraire and Cockburn [17] applied DG to these equations as well, using triangular and 
tetrahedral grids. However, incompressible solvers involving a Poisson solver cannot be easily parallelized according to do-
main decomposition of the grid. One advantage of the approach taken in our current work lies in the fact that the method 
is discontinuous and local; as a result, there is no global matrix to split.

In recent years, the lower–upper symmetric Gauss–Seidel (LU-SGS) scheme that was originally developed by Jameson and 
Yoon [18] with multiple grids for solving the unsteady Euler equations has been used within the high-order CFD community 
for solving compressible flow problems on unstructured grids using SD [19–21] and SV [22] methods. However, when solving 
incompressible flows using artificial compressibility, the LU-SGS scheme is more economical because it requires the solution 
of only three equations in two dimensions as opposed to the four needed for compressible flow. Furthermore, with the 
introduction of artificial compressibility, pressure and velocity are loosely coupled and the Navier–Stokes equations take on 
a mixed hyperbolic/parabolic mathematical nature. This loose coupling lends itself to parallel computing as both pressure 
and velocity are state variables in pseudo time. As such, this paper aims to bring a popular high-order method and time 
stepping technique for producing high-order accurate solutions for compressible flow to the incompressible flow regime. 
In this regard the current method is novel, especially if it can be applied to moving and deforming grids needed to solve 
problems involving fluid–structure interaction (FSI) on massively parallel computers.

2. Governing equations with artificial compressibility

Numerical computation of incompressible flow is challenging because the continuity equation lacks a time-dependent 
term. To handle this difficulty, consider the two-dimensional unsteady incompressible Navier–Stokes equations with artificial 
compressibility written in conservation form

∂U

∂τ
+ I D

∂U

∂t
+ ∇ · F (U ,∇U ) = 0 (1)

where terms involving τ and t represent pseudo and physical time derivatives, respectively. The vector of state variables 
U (x, y, t) ∈ �, where � ⊂R

2 and t ≥ 0, and the vector of fluxes F (U , ∇U ) are

U =
⎡
⎣ p

u
v

⎤
⎦ , F (U ,∇U ) =

[
f
g

]
(2)

where I D = diag(0, 1, 1). The flux vector contains both inviscid and viscous terms in x and y, where f = f e − f v and 
g = ge − g v . The inviscid fluxes for the artificial compressibility formulation are

f e =
⎡
⎣ βu

u2 + p
uv

⎤
⎦ , ge =

⎡
⎣ βv

uv
v2 + p

⎤
⎦ (3)

and the viscous fluxes are



Download English Version:

https://daneshyari.com/en/article/6930330

Download Persian Version:

https://daneshyari.com/article/6930330

Daneshyari.com

https://daneshyari.com/en/article/6930330
https://daneshyari.com/article/6930330
https://daneshyari.com

